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Abstract

In many competitive video games it is possible for players to compete
against a computer controlled opponent. It is important that such oppo-
nents are able to play at a worthy level to keep players engaged. A great
deal of research has been done on Artificial Intelligence (AI) in games
to create intelligent computer controlled players, more commonly re-
ferred to as AI agents, for a large collection of game genres. In this thesis
we have focused on how to create an intelligent AI agent for the tacti-
cal turn-based game Hero Academy, using our own open source game
engine Hero AIcademy. In this game, players can perform five sequen-
tial actions resulting in millions of possible outcomes each turn. We
have implemented and compared several AI methods mainly based on
Monte Carlo Tree Search (MCTS) and evolutionary algorithms. A novel
progressive pruning strategy is introduced that significantly improves
MCTS in Hero Academy. Another approach to MCTS is introduced, in
which the exploration constant is set to zero and greedy rollouts are
used, that also gives significant improvement. An online evolutionary
algorithm that evolves plans during each turn achieved the best results.
The fitness function of the evolution is based on depth-limited rollouts
to determine the value of plans. It did, however, not increase the perfor-
mance significantly. The online evolution agent was able to play Hero
Academy competitively against human beginners but was easily beaten
by intermediate and expert players. Aside from searching for possible
plans it is critical to evaluate the outcome of these intelligently. We
evolved a neural network, using NEAT, that outperforms our own man-
ually designed evaluator for small game boards, while more work is
needed to obtain similar results for larger game boards.
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Chapter 1

Introduction

Ever since I was introduced to video games, my mind has been baf-
fled by the question: "How can a computer program play games?"
The automation and intelligence of game-playing computer programs
have kept me fascinated since and have been the primary reason why
I wanted to learn programming. Game-playing programs, or Artificial
Intelligence (AI) agents as they are called, can allow a greater form of
interaction with the game system e.g. by letting players play against the
system or as a form of assistance during a game. During my studies at
the IT University of Copenhagen I have had the opportunity to explore
the underlying algorithms of such AI agents providing me with answers
to my question. Today I am not only interested in the methods but also
for which types of games it is possible, using state of the art methods,
to produce challenging AI agents. While the current state of research in
this area can be seen as a stepping stone towards something even more
intelligent, it also serves as a collection of methods and results that can
inspire game developers in the industry. Exploring the limits and dif-
ferent approaches in untested classes of games is something I believe is
important for both the game industry and the field. My interest in this
question has previously led me to explore algorithms for the very com-
plex problem of controlling units during combat in the real-time strategy
game StarCraft, which turned into a paper for the IEEE Conference on
Computational Intelligence and Games in 2014 [1]. This thesis will have
a similar focus of exploring AI algorithms for a game with a very high
complexity, but this time for the Tactical Turn-Based (TTB) game Hero
Academy. Before explaining why TTB games have caught my interest, a
very brief overview of Artificial Intelligence (AI) in games is presented.
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Hereafter I will argue why TTB games including Hero Academy is an
unexplored type of game in the game AI literature.

1.1 AI in Games

The fields of Artificial Intelligence and Computational Intelligence in games
are concerned with research in methods that can produce intelligent
behavior in games. As there is a great overlap between the two fields
and no real agreement on when to use which term, game AI will be used
throughout this thesis to describe the two joined fields.

AI methods can be used in many different areas of the game devel-
opment process, which have formed several different sub-fields within
game AI. Ten sub-fields were recently identified and described by To-
gelius and Yannakakis [2]. One popular sub-field is Procedural content
generation, in which AI methods are used to generate content in games
such as weapons, storylines, levels and even entire game descriptions.
Another is Non-player character (NPC) behavior, which is concerned with
methods used to control characters within a game. In this thesis we will
only be concerned with methods that are used to control an agent to
play a game. This sub-field is also called Games as AI benchmarks. Re-
search in this sub-field is relevant for other sub-fields within game AI
as they can be used for automatic play-testing and content generation
by simulating the behavior of human players. Intelligent AI agents can
also be used as worthy opponents in video games, which is essential
for some games. Game AI methods can also be applied to many real-
world problems related to planning and scheduling, and one could say
that games are merely a sand box in which AI methods can be devel-
oped and tested before it is applied to the real world. On the other
hand, games are a huge industry, where AI still has a lot of potential
and unexplored opportunities, especially when it comes to intelligent
game-design assistance tools.

To get a brief overview of the field of game AI, let us take a look at
which type of games researchers have focused on. This is far from a
complete list of games, but simply an effort to highlight the different
classes of games that are used.

Programming a computer to play Chess has been of interest since
Shannon introduced the idea in 1950 [3]. In the following decades a
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multitude of researchers helped the progress of Chess playing comput-
ers, and finally in 1997 the Chess machine Deep Blue beat the world
chess champion Garry Kasparov [4]. Chess playing computer programs
implement variations of the minimax search algorithm that in a brute
force style makes an exhaustive search of the game tree. One of the
most important discoveries in computer Chess has been the Alpha-beta
pruning algorithm that enables the minimax search to ignore certain
branches in the tree.

In 2007 Schaeffer et al. announced that the game Checkers was solved
[5]. The outcome of each possible opening strategy was calculated for
when no mistakes were made by both players. Since the game tree was
only partly analyzed, the game is only weakly solved. Another game
that recently has been weakly solved is Heads-up limit hold’em Poker [6],
which requires an immense amount of computation due to the stochastic
nature of the game. Most interesting games are, however, not solved, at
least not yet, and may perhaps never be solved due to their complexity.

After Chess programs reached a super-human level, the classic board
game Go has become the most dominant benchmark game for AI re-
search. The number of available actions during a turn in Go is much
larger than in Chess and creates problems for the Alpha-beta pruning
algorithm. The average number of available actions in a turn is called
the branching factor and is an important complexity measure for games.
Another challenge in Go is that game positions are very difficult to eval-
uate, which is essential for a depth-limited search. Monte Carlo Tree
Search (MCTS) has greatly influenced the progress of Go-playing pro-
grams. It is a family of search algorithms that uses stochastic simulations
as a heuristic and iteratively expands the tree in the most promising di-
rection. These stochastic simulations have turned out to be very effective
when it comes to evaluation of game positions in Go. Machine learn-
ing techniques in combination with pattern recognition algorithms have
enabled recent Go programs to compete with human experts. The com-
puter Go web site keeps track of matches played by expert Go players
against the best Go programs1. MCTS has shown to work well in a va-
riety of games and has been a popular choice for researchers working
with AI for modern board games such as Settlers of Catan [7], Carcassonne
[8] and Dominion [9].

A lot of game AI research have also been made on methods applied
to real-time video games. While turn-based games are slow and allow

1http://www.computer-go.info/h-c/index.html2013
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AI agents to think for several seconds before taking an action, real-time
games are fast-paced and often require numerous actions within each
second of the game. Among popular real-time benchmark games are:
the racing game TORCS, the famous arcade game Ms. PacMan and the
platformer Super Mario Bros. Quality reverse-engineered game clones
exist for these games and several AI competitions have been held using
these clones to compare different AI methods.

Another very popular game used in this field is the real-time strategy
(RTS) game StarCraft. Since this game requires both high-level strategic
planning as well as low-level unit control, it offers a suite of problems
for AI researchers and has also been subject for several AI competitions
that are still ongoing. Few open source RTS games such as WarGus (a
clone of WarCraft II) and Stratagus have also been used as benchmark
games.

The general video game playing competition has been popular the
last years, where researchers and students develop AI agents that com-
pete in unseen two-dimensional arcade games [10]. A recent approach
to general video game playing has been to evolve artificial neural net-
works to play a series of Atari games, which even surpassed human
scores in some of the games [11]. Evolutionary computation has been
very influential to game AI as interesting solutions can be found when
mimicking the evolutionary process seen in nature.

The mentioned games in this section can be put into two categories.
The first is turn-based games and the second is real-time games. The
branching factors of the mentioned turn-based games is around 10 to
300 while some real-time games have extremely high branching factors.
Prior the work presented in this thesis it became apparent to me that
very little work has been done on AI in turn-based games with very
large branching factors. Most turn-based games have been board games,
where players perform one or two actions each turn. A popular class of
turn-based games, where players take multiple actions each turn, is TTB
games. These games can have branching factors in the thousands and
even millions and will be the focus in this thesis as they, to my knowl-
edge, seem like a unexplored domain in the field of game AI. Figure 1.1
shows how TTB games are unique from some of the other game genres.
TTB games are a genre that seems to always lie in the category of turn-
based games with high branching factors. Some board games, such as
Risk, and turn-based strategy video games, such as Sid Meier’s Civiliza-
tion, do also belong to this category while they may not be classified as
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TTB games. Other dimensions are of course important when categoriz-
ing games by their complexity such as hidden information, randomness
and amount of rules. Still, this figure should express the kind of games
that I believe needs more attention.

Figure 1.1: A few game genres categorized after their branching factor and whether they are turn-based
or real-time. Tactical Turn-based games, including Hero Academy, is among Turn-based games with very
high branching factors.

Next section will explain a bit more about TTB games and give con-
crete examples of some published TTB games.

1.2 Tactical Turn-based Games

In strategy games players must make long term plans to defeat their
opponent, and it requires tactic manoeuvres to obtain their objectives.
Strategy is extremely important in RTS games as players produce build-
ings and upgrades that will have a long term effect on the game. One
sub-genre of strategy games is Tactical Turn-based (TTB) games. In these
games the continuous execution in each turn is extremely critical. Mov-
ing a unit to a wrong position can easily result in a lost game. These
games are often concerned with small-scale combats instead of series of
battles and usually have a very short cycle of rewards. Strategy games
are mostly implemented as real-time games, while tactical games are
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more suited as turn-based games. Modern games such as Blood Bowl, X-
Com and Battle for Wesnoth are all good examples of TTB games. These
games have very large branching factors since players have to make mul-
tiple actions each turn. I also refer to such games as multi-action games
in contrast to single-action games like Chess and Go. It would be igno-
rant to say that these games do not require any strategy, but the tactical
execution is simply much more important. One very interesting digital
TTB game is Hero Academy as its branching factor is in the millions, and
it has a very short cycle of rewards. This game was chosen as the bench-
mark TTB game for this thesis and a thorough introduction to the game
rules are given in the following chapter.

Among other TTB games that have been studied in game AI research
is Advance Wars. This game has a much larger game world than Hero
Academy and requires more strategic choices such as unit production
and complex terrain analysis. Hero Academy is thus a more focused
test bed as it is mostly concerned with tactical decisions. Bergsma and
Sprock [12] designed a two-layered influence map that is merged using
an evolved neural network to control units in Advance Wars. The in-
fluence map was used to identify the most promising squares to either
move to or attack.

1.3 Research Question

In the previous sections I argued why TTB games are an under-explored
type of game and why I think it is important to focus on these. The
game Hero Academy was chosen as the benchmark TTB game for this
thesis and the goal will be to explore AI methods for this game and
examine the achieved playing level compared to human players. One
focused research question was made based on this goal:

Research question
How can we design an AI agent that is able to challenge
human players in Hero Academy?

In this introduction I have referred to myself as I, but throughout
this thesis we will be used instead, even though the work presented was
solely made by me, the author.
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Hero Academy

Hero Academy is a two-player Tactical Turn-Based (TTB) video game
developed by Robot Entertainment. It was originally released on iOS in
2012 but is now also available on Steam, Android and Mac. The game
is a multi-action game as players have five action points each turn they
can spend to perform actions sequentially. It is played asynchronous
typically over several days but are played in one sitting during tourna-
ments. It was generally well received by the critics1 and hit the top 10
list of free games in China within just 48 hours2.

2.1 Rules

The rules of Hero Academy will be explained as if it was a board game,
as it simply is a digital version of game that could just as well be released
physically. This will hopefully make it easier to understand the rules for
people familiar with board game mechanics.

Hero Academy is played over a number of rounds until one player
have lost both crystals or all units. The game is played on a game board
of 9x5 squares containing two deploy zones and two crystals for each
player. Both players have a deck of 34 cards from which they draw
cards onto their secret hand. In the beginning of each round cards are
drawn until the maximum hand size of six is reached or the deck is
empty. This is the only element in the game with hidden information

1http://www.metacritic.com/game/pc/hero-academy
2http://www.gamasutra.com/view/news/177767/How_Hero_Academy_went_

big_in_China.php
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and randomness. Everything else is deterministic and visible to both
players. The graphical user interface in the game does actually not vi-
sualize these elements as playing cards but they do work mechanically
equivalent. Cards can either represent a unit, an item or a spell. The ini-
tial game board does not contain any units but will gradually be filled
as more rounds are played.

In Hero Academy players control one of six different teams: Council,
Dark Elves, Dwarves, The Tribe, Team Fortress and The Shaolin. In this
thesis we will only focus on the Council team which is the first team
players learn to play in the tutorial. The game offers several game boards
with different features. Again, only one will be used for this thesis (see
Figure 2.1). Features, mechanics and rules described in this chapter will
thus only be those relevant to the selected game board and the Council
team.

Figure 2.1: The selected game board with the following square types on (x,y): Player 1 deploy zones
(1,1) and (1,5) , player 1 crystals (2,4) and (3,2), assault square (5,5), defense square (5,1), power square
(3,3) and (7,3), player 2 crystals (7,2) and (8,4). Image is from the Hero Academy Strategy blog by Charles
Tan (http://heroacademystrategy.blogspot.dk/). Some squares are not described in this introduction, but
a can be looked up in the blog by Charles Tan.

2.1.1 Actions

Players take turn back and forth until the game is over. During each
turn players have 5 Action Points (AP) they can spend on the actions



2.1. Rules 9

described below. Each action costs 1 AP and are allowed to be per-
formed in any order and even several times each turn. It is also allowed
to perform several actions with the same unit.

Deploy
A unit can be deployed from a players hand onto an unoccupied
deploy zone they own. Deploying units simply means that a unit
card on the player’s hand is discarded and the unit represented on
the card is placed on the selected deploy zone.

Equip
One unit on the board can be equipped with an item from the
hand. Units cannot carry more than one of each item and it is
not possible to equip opponent units. Similar to the deploy action,
the item card is discarded and the item represented on the card is
given to the selected unit.

Move
One unit can be moved a number of squares equal to or lower than
its Speed attribute. Diagonally moves are not allowed. Units can,
however, jump over any number of units along their path as long
as the final square is unoccupied.

Attack
One unit can attack an opponent unit within the number of squares
equal to its Attack Range attribute. The amount of damage dealt is
based on numerous factors such as the Power attribute of the at-
tacker, which items the attacker and defender holds, which squares
they stand on and the resistance of the defender. There are two
types of attacks in the game: Physical Attack and Magical Attack.
Likewise, units can have Physical Resistance and Magical Resistance
that protects them against those attacks. The defender will in the
end lose health points (HP) equal the calculated damage. If the
HP value of the defender reaches zero the defender will become
Knocked Out. Knocked Out units cannot perform any actions and
will be removed from the game if either a unit moves onto its
square (called Stomping) or if it is still knocked out by the end of
the owners following turn.

Special
Some units have special actions such as healing. These are de-
scribed later when each unit type is described.
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Cast Spell
Each team have one unique spell that can be cast onto a square on
the board from the hand, where after the spell card is discarded.
Spells are very powerful and usually saved until a very good mo-
ment in the game.

Swap Card
Cards on the hand can be shuffled into the deck in hopes of draw-
ing better cards in the following round.

2.1.2 Units

Each team has four different types of basic units and one so called Super
Unit. In this section a short description of each of the five units on the
Council team is presented. Units normally have Power 200, Speed 2, 800
HP and no resistances. Only the specialities of each unit are highlighted
below.

Figure 2.2: The five different units on the Council team. From left to right: Archer, cleric, knight, ninja
and wizard.

Archer
Deals 300 physical damage within range 3. Archers are very good
at knocking out enemy units in one turn with their long range and
powerful attack.

Cleric
As a special action the cleric can heal friendly units within range
2. Healed units gain HP equal to three times the power of the
cleric. Knocked out units can also be revived using this action but
then only gains two times the power in HP. The cleric deals 200
magical damage within range 2 and has 20% Magical Resistance.
It is critical to have at least one cleric on the board to be able to
heal and revive units.
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Knight
With 1000 HP and 20% Physical Resistance the knight is a very
tough unit. It deals 200 physical damage within range 1 and
knocks back enemy units one square, if possible, when attacking.
The Knight is able to hold and conquer critical positions on the
board as it is very difficult to knock out in one turn.

Ninja
The super unit of the Council team. As a special action the ninja
can swap positions with any other friendly unit that is not knocked
out. The ninja deals 200 physical damage within range 2 but deals
double damage when attacking at range 1. Additionally, the ninja
has speed 5. This unit is very effective as it is both hard hitting
and allows for more mobility on the board.

Wizard
The wizard deals 200 magical damage within range 2. Further-
more, its attack makes two additional chain attacks if enemy units
or crystals stand next to the target. The game guide says that the
the chain attacks are random but the actual deterministic behavior
have been described by Hamlet in his own guide3.

2.1.3 Items and Spells

Each team has different items that can be given to units on the board
using the equip action, and one spell that can be cast onto the board
with the cast spell action. This section will briefly describe the five
different items and the spell of the Council team.

Figure 2.3: The items and spell of the Council team. From left to right: Dragonscale, healing potion,
runemetal, scroll, shining helmet and inferno.

3http://iam.yellingontheinternet.com/2012/08/10/hero-academy-mechanics-
guide/#elves
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Dragonscale (item)
Gives +20% Physical Resistance and +10% maximum HP.

Healing Potion (item)
Heals 1000 HP or revives a knocked out unit to 100 HP. This item
is used instantly and then removed from the game.

Runemetal (item)
Boosts the damage dealt by the unit with 50%.

Scroll (item)
Boosts the next attack by the unit with 300% where after it is re-
moved from the game.

Shining Helmet (item)
Gives +20% Physical Resistance and +10% HP.

Inferno (spell)
Deals 350 damage to a 3x3 square area. If units in this area are
already knocked out, they are instantly removed from the game.

The council team starts with 3 archers, 3 clerics, 3 knights, 1 ninja,
3 wizards, 3 dragonscales, 2 healing potions, 3 runemetals, 2 scrolls, 3
shining helmets and 2 infernos in their deck.

2.2 Game Engine

Robot Entertainment have, as most other game companies, not pub-
lished the source code for their games and no open source clones existed
prior to this thesis to our knowledge. To be able to perform experiments
in the game Hero Academy, we have developed our own clone. The de-
velopment of this clone was initiated prior to this thesis, but the quality
was continuously improved while it was used, and several features have
been added. This Hero Academy clone have been named Hero AIcademy
and is written in Java.

Hero AIcademy only implements the Council team and the square
types from the game board on Figure 2.1. Besides that, all rules have
been implemented. The main focus of Hero AIcademy have been on
allowing AI agents to play the game rather than on graphics and ani-
mations. In this section a brief overview of how AI agents interact with
the engine is presented. The complete source code of the engine as of
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1st of June 2015 is provided on this GitHub page4 and the continued
development can be followed on the official Hero AIcademy GitHub
page5.

Figure 2.4: Simplified class diagram of Hero AIcademy

The Game class is responsible for the game loop and repeatedly
requests actions from the agents in the game. The act(s:GameState)
method, that must be implemented by all agents, is given a clone of
the game state held by the Game class. Using this game state, agents
can call the possibleActions(a:List<Action>) on the GameState object to
abtain a list of available actions. The Game class also calls a UI imple-
mentation during the game loop that uses some of the graphics from
the real game. Human players can interact with the interface using the
mouse.

2.3 Game Complexity

This section will aim to analyse the game complexity of Hero Academy.
The complexity of a game is important knowledge when we want to
apply AI methods to play it, as some methods only works with games
of certain complexities. The focus here is on the game-tree complexity,
including the average branching factor, and the state-space complexity.
The estimated complexity will throughout this section be compared to
the complexity of Chess.

4https://github.com/njustesen/hero-ai
5https://github.com/njustesen/hero-aicademy
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Figure 2.5: The user interface of Hero AIcademy.

2.3.1 Possible Initial States

In order to estimate how many possible games of Hero Academy that
theoretically can be played, we must know first know the number of
possible initial states. Before the game begins each player draws six
cards from their deck. The deck is shuffled which makes the starting
hands random. This makes 5,730 possible starting hands6 and 5, 7302 =
32, 832, 900 possible initial states by taking both players starting hand
into account. In Hero Academy the starting player is decided randomly
thus doubling the number to 65, 665, 800. This is, however, still only
when one game board and one team is used.

2.3.2 Game-tree Complexity

A game tree is a directed graph where nodes represent game states
and edges represent actions. Leaf nodes in a game tree represent a
terminal state, i.e. when the game is over. The game-tree complexity is

6Calculated using http://www.wolframalpha.com/ by searching "subsets of size
6 {a,a,a,c,c,c,k,k,k,n,w,w,w,d,d,d,p,p,r,r,r,s,s,h,h,h,i,i}"
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determined by the number of leaf nodes in the entire game-tree which is
also the number of possible games. Studying the game-tree complexity
of a game is interesting as many AI methods use tree search algorithms
to determine the best action in a given state. Tree search algorithms will
obviously be able to search through small game trees very fast, while
some very large trees will be impractical to search in.

The branching factor of a game tells us the how many children each
node has in the game tree. In most games this number is not uniform
throughout the tree and we are thus interested in the average. The
branching factor thus tells us the average number of available moves
during a turn. Since players in Hero Academy are performing actions
in several sequential steps, we will first calculate the branching factor of
a step.
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Figure 2.6: Available actions for player 2, playing the Council team, during a recorded game ses-
sion on YouTube (https://www.youtube.com/watch?v=OMtWTv_Tf4s) uploaded by the user Elagatua on
01/20/2014. Wemanually counted the number of available actions and the numbers may contain minor
errors. Actions using the inferno spell, which would not have dealt any damage, were not counted.

By manually counting the number of possible actions throughout
a recorded game on YouTube (see 2.6) we can estimate the average
branching factor to be somewhere around 60. The results from 24
games in an ongoing tournament called Fast Action Swiss Tournament
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(FAST)7 were collected and these games had an average length of 42
rounds. Nine of the games ended in a resignation before the game
actually ended.

With an average branching factor of 60 for one step, a turn with
five actions will have 605 = 7.78× 108 possible variations. One round
where both players take turn will have (605)2 = 6.05 × 1017 possible
variations. As a comparison Chess has a branching factor of around 35
for a turn and the difference really shows the complexity difference of
single-action and multi-action games. A lower bounds of the game-tree
complexity can finally be estimated by raising the number of possible
variations of one round to the power of the average game length. In this
estimation the stochastic events of drawing cards is however left out.
Using the numbers from above we end up with a game-tree complexity
of ((605)2)40 = 1.82× 10711.

Given an initial game state in Hero Academy there are thus a mini-
mum of 1.82× 10711 possible ways the game can be played. Remember
that these calculations are still ignoring the complexities of randomness
during the game. The game-tree complexity of Chess was calculated by
Shannon in a similar way to be 10120 [3].

2.3.3 State-space Complexity

The state-space complexity is the number of legal game states that is
actually possible to reach. It is not trivial to calculate this number for
Hero Academy and the aim of this section will be to find the number of
possible board configurations by only considering units and not items.
The game board has 45 squares. Two of these squares are deploy zones
owned by the opponent and up to four squares are occupied by crystals.
Let us only look at the situation where all crystals are on the board
with full health. On this board there are 39 possible squares to place a
unit. Hereafter, there are 38, then 37 and so on. Using this idea we can
calculate the number of possible board configurations for n units with
the following function:

con f (n) =
n

∏
i=1

(39− i + 1)

7http://forums.robotentertainment.com/showthread.php?5378-Fast-Action-
Swiss-Tournament-(FAST)
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For n = 26, the situation where all units are on the board, con f (26) =
3.28× 1036. A lot of these configurations will in fact still be identical
since placing an archer on (1,1) and then another archer on (2,2) is the
same as first placing an archer on (2,2) and then one on (1,1). This
however becomes insignificant when we also consider the fact that units
have different HP values. I.e. the first archer we place might have 320
HP and the second might have 750. Most units have a maximum HP
value of 800, but knights have 1000 and the shining helmet gives +10%
HP. For simplicity 800 will be used here for any unit. Adding HP to the
function gives us the following:

con f _hp(n) =
n

∏
i=1

((39− i + 1)× 800)

For n = 26, the situation where all units are on the board,
con f _hp(26) = 9.90× 10111. This is the number of possible board con-
figurations with all 26 units on the board, also considering HP values,
but still without items. The number of possible board configurations for
any number of units is calculated by taking the product of con f _ho(26),
con f _ho(25), con f _ho(24) and so on:

con f _all =
26

∏
n=0

con f _hp(n)

If we calculate con f _all we will get the number 1.57 × 10199 and
it seems pointless to try reaching a more precise number. Since the
board configuration is only one part of the game state and items are
not considered, the state-space complexity of Hero Academy is thus
much larger than this number. As a comparison Chess has a state-space
complexity of 1043.





Chapter 3

Related work

Games are a very popular domain in the field of AI, as they offer an
isolated and fully understood environment that are easy to reproduce
for testing. Because of this, thousands of research papers have been
released in this field offering numerous algorithms and approaches to
AI in games. In this chapter some of the most popular algorithms are
presented that are relevant to the game Hero Academy. Each section will
give an introduction to a new algorithm or method which are followed
by a few optimization methods that seem relevant when applied to Hero
Academy.

3.1 Minimax Search

Minimax is a recursive search algorithm that can be used as a decision
rule in two-player zero-sum games. The algorithm considers all possi-
ble strategies for both players and selects the strategy that minimizes the
maximum loss. In other words, minimax picks the strategy that allows
the opponent to gain the least advantage in the game. The minimax the-
orem that establishes, that there exists such a strategy for both players,
was proven by John von Neumann in 1928 [13].

In most interesting games, game trees are so large that the mini-
max search must be limited to a certain depth in order to reach a result
within a reasonable amount of time. An evaluation function, also called
a heuristic, is then used to evaluate the game state when the depth-limit
is reached. E.g. in Chess a simple evaluation function could count the
number of pieces owned by each player and return the difference.
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In 1997 the Chess Machine called Deep Blue won a six-game match
against World Chess Champion Garry Kasparov. Deep Blue was run-
ning a parallel version of minimax with a complex evaluation function
and a database of games with grandmasters [4].

3.1.1 Alpha-beta pruning

The alpha-beta pruning algorithm is an optimization of minimax, as it
stops the evaluation of a node if it is found to be worse than an already
searched move. The general idea of ignoring nodes in a tree search is
called pruning. An example of alpha-beta pruning is shown on Figure
3.1, where two nodes are pruned because the min-player can select an
action that leads to a value of 1, which is worse that the minimax-value
of already visited sub-trees. The max-player should never go in that
direction and thus the search at that node can stop. Alpha-beta pruning
is thus able to increase the search depth while it is guaranteed to find
the same minimax value for the root node [14].

Figure 3.1: The search tree of the alpha-beta pruning algorithm with a depth-limit of two plies. Two
branches can be pruned in the right-most side of the tree shown by two red lines. Figure is from
Wikipedia1.

3.1.2 Expectiminimax

A variation of minimax called expectiminimax is able to handle random
events during a game. The search works in a similar way but some
nodes, called change nodes, will have edges that correspond to random
events instead of actions performed by a player. The minimax value of a

1http://fr.wikipedia.org/wiki/%C3%89lagage_alpha-beta
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change node is the sum of all its childrens probilistic values, which are
calulated by multiplying the probability of the event with its minimax
value. Expectiminimax can be applied to games such as Backgammon.
The search tree is, however, not able to look many turns forward because
of the many branches in change nodes. This makes Expectiminimax less
effective for complex games.

3.1.3 Transposition Table

A transposition is a sequence of moves that results in a game state that
could also have been reached by another sequence of moves. An ex-
ample in Hero Academy would be to move a knight to square (2,3)
and then a wizard to square (3,3), where the same outcome can be be
achieved by first moving the wizard to square (3,3) and then the knight
to square (2,3). Transpositions are very common in Chess and result
in a game tree containing a lot of identical sub trees. The idea of in-
troducing a transposition table is to ignore entire sub trees during the
minimax search. When an already visited game state is reached, it is
simply given the value that is stored in the transposition table. Green-
blatt et al. was the first to apply this idea to Chess [15], and it has since
been an essential optimization in computer Chess. A transposition table
is essentially a hash table with one entry for each unique game state that
has been encountered. Various methods for creating hash codes from a
game state in Chess exists with the most popular being Zobrist hashing
which can be used in other board games as well, e.g. Go and Checkers
[16]. Since most interesting games, including Chess and Hero Academy,
have a state space complexity much larger than we can express using a
64-bit integer, also known as a long, some game states share hash codes
even though they are in fact different. When such a pair of game states
are found, a so-called collision occurs but are usually ignored since they
are very rare.

3.2 Monte Carlo Tree Search

The Alpha-beta algorithm fails to succeed in many complex games or
when it is difficult to design a good evaluation function. This section
will describe another popular tree search method that are useful when
alpha-beta falls short. Monte Carlo Tree Search (MCTS) is a family of
iterative tree search methods that balance randomized exploration of



22 Chapter 3. Related work

the search space with focused search in the most promising direction.
Additionally, its heuristic is based on game simulations and thus does
not need a static evaluation function. MCTS was formalized as a frame-
work by Chaslot et al. in 2008 [17] and has since shown to be effective
in many games. Most notably it has revived the interest of computer
Go, as the best of these programs today implement MCTS and are able
to compete with Go experts [18]. One advantage of MCTS over alpha-
beta is that it merely relies on its random sampling where alpha-beta
must use a static evaluation function. Creating evaluation functions for
games such as Go can be extremely difficult and thus makes alpha-beta
very unsuitable. Another key feature is that MCTS is able to search
deep in promising directions while ignoring obvious bad moves early.
This makes MCTS more suitable for games with large branching factors.
Additionally, MCTS is anytime, meaning that it at any time during the
search can return the best action found so far.

MCTS iteratively expands a search tree in the most urgent direction,
where each iteration consists of four phases. These are depicted on
Figure 3.2. In the Selection phase The most urgent node is recursively
selected from the root using a tree policy until a terminal or unexpanded
node is found. In the Expansion phase one or more children are added
if the selected node is non-terminal. In the Simulation phase a simulated
game is played from an expanded node. This is also called a rollout.
Simulations are carried out in a so called forward model that implements
the rules of the environment. In the Backpropagation phase the result of
the rollout is backpropagated in the tree and the value and visit count
of each node are updated.

The tree policy is responsible for balancing exploration over exploita-
tion. One solution would be to always expand the search in the direc-
tion that gives the best values, but the search would then easily oversee
more potent areas of the search space. The Upper Confidence Bounds
for Trees (UCT) algorithm solves this problem with the UCB1 formula
[19]. When it has to select the most urgent node amongst the children
of a node it tries to maximize:

UCB1 = X j + 2Cp

√
2 ln n

nj

where X j is the average reward gained by visiting the child, n is
the visit count of the current node, nj is the visit count of the child
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Figure 3.2: The four phases of the MCTS algorithm. Figure is from [17].

j and Cp is the exploration constant used to determine the amount of
exploration which varies between domains. We will continue to refer to
this algorithm as MCTS, even though the actual name is UCT, when it
implements the UCB1 formula.

MCTS became one of the main focus points in this thesis and thus a
great deal of time was spend on enhancements for this algorithm. The
number of variations and enhancements that exists for MCTS far ex-
ceeds what was possible to implement and test in this thesis. We have
thus aimed to only focus on enhancements that enables MCTS to over-
come large branching factors as these will be relevant to Hero Academy.
These enhancements are presented in the following sections.

3.2.1 Pruning

Pruning obvious bad moves can in many cases optimize an MCTS imple-
mentation when dealing with large branching factors. However, a great
deal of domain knowledge is required to determine whether moves are
good or bad. Two types of pruning exists [20]. Soft pruning is when
moves are initially pruned but may later be added to the search and
Hard pruning is when some moves are entirely excluded from the search.
An example of soft pruning is the Progressive Unpruning/Widening tech-
nique which was used to improve the Go playing program Mango [21]
and MoGo [22]. Next section will describe these progressive strategies,
as the main concept was used in our own MCTS implementations.
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3.2.2 Progressive Strategies

The concept of progressive strategies for MCTS was introduced by Chaslot
et al. [21] as they described two of such strategies called progressive
bias and progressive unpruning. With progressive bias the UCT selection
function (see the original in Section 3.2) is extended to the following:

UCB1pb = X j + 2Cp

√
2 ln n

nj
+ f (nj)

where f (nj) adds a heuristic value when nj is low. In this way heuris-
tic knowledge is used to guide the search as long as the rollouts produce
a reliable result. Chaslot et al. chose f (nj) =

H
nj+1 where H is the heuris-

tic value of the game state j.
The other progressive strategy is progressive unpruning, where a node’s
branches are first pruned using a heuristic and then later progressively
unpruned as its visit count increases. A very similar approach intro-
duced by Coulom called progressive widening was shown to improve the
Go program Crazy Stone [23]. The two progressive strategies both indi-
vidually improved the play of the Mango program in the game Go, but
combining both strategies produced the best result.

3.2.3 Domain Knowledge in Rollouts

The basic MCTS algorithm does not include any domain knowledge
other than its use of the forward model. Nijssen showed that using
pseudo random move generation in the rollouts could improve MCTS
in Othello [24]. During rollouts moves were not selected uniformly but
better moves, determined by a heuristic, were preferred and selected
more often.

Another popular approach is to use ε-greedy rollouts that select the
best action determined by a heuristic with probability ε and otherwise
select a random action. This heuristic can either be implemented man-
ually or learned. ε-greedy rollouts was shown to improve MCTS in the
game Scotland Yard [25].

3.2.4 Transpositions

As for minimax, a transposition table can also improve the performance
of MCTS in some domains. If a game has a high number of transposi-
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tions, it is more likely that introducing a transposition table will increase
the playing strength of MCTS. Méhat et al. tested MCTS in single-player
games from the General Game Playing competition and showed that
transposition tables improved MCTS in some games while no improve-
ment was observed in others [26].

Usually, the search tree in MCTS contains nodes which have di-
rect references to their children. In order to handle transpositions in
MCTS the search tree is often changed to also contain edges, since sev-
eral nodes can have multiple parents [27]. This changes the tree into a
Directed Acyclic Graph (DAG). During the expansion phase a node is
only created if it represents an unvisited game state. To save memory
and computation, game states are transformed into hash codes. A trans-
position table is used where each entry holds the hash code of a game
state and a reference to its node in the DAG. If the hash code of a newly
explored game state already exists in the transposition table an edge
is simply created and pointed to the already existing node. In this way
identical sub trees are ignored. Backpropagation is simple when dealing
with a tree but with a DAG several methods exist [27]. One method is to
update the descent path only. This method is very simple to implement
and is very similar to how back propagation is done in a tree.

3.2.5 Parallelization

Most devices today have multiple processor cores. Since AI techniques
often require a high amount of computation, utilizing multiple proces-
sors efficiently with parallelization can increase the playing strength sig-
nificantly. MCTS can be parallelized in three different ways [28]:

Leaf parallelization
This parallelization method is by far the simplest to implement. At
each leaf multiple concurrent rollouts are performed. MCTS thus
runs single-threaded in the selection, expansion and backpropa-
gation phases but multi-threaded in the simulation phase. This
method simply improves the precision of evaluations and may be
able to identify more promising moves faster.

Root parallelization
This method builds multiple MCTS trees in parallel, that in the end
are merged. Very little communication is needed between threads,
which also makes this method simple to implement.
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Tree parallelization
Another method is to use one shared tree, where several threads
simultaneously traverse and expand it. To enable access to the
tree by multiple threads, mutaxes can be used as locks. A simpler
method called virtual loss adds a high number of losses to a node
in use, so no other threads will go in that direction.

Chaslot et al. compared these three methods in 13x13 Go and used a
strength-speedup measure to express how much improvement each meth-
ods added [28]. All their experiments were performed using 16 proces-
sor cores. A strength-speedup measure of 2.0 means that the paral-
lelization method plays as well as a non-parellelized method with dou-
ble as much computation time. The leaf parallelization method was
the weakest with a strength-speedup of only 2.4, while root paralleliza-
tion gained a strength-speedup of 14.9. Tree parallelization gained a
strength-speedup of 8.5 and remains the most complicated of the three
methods to implement.

3.2.6 Determinization

In stochastic games, and games with hidden information, MCTS can
use determinization to transform a game state into a deterministic one
with open information. Another more naive approach would simply be
to create a new node for each possible outcome due to randomness or
hidden information, but this will often result in extremely large trees.
Cazenave used determinization for MCTS in the game Phantom Go [29],
which is a version of Go with hidden stones, by guessing the positions
of the opponent stones before each rollout.

3.2.7 Large Branching Factors

MCTS has been successful in many other games than Go. Amazons is
a game with a branching factor above 1,000 during the 10 first moves
in the game. Using depth-limited rollouts with an evaluation function,
among other improvements, Kloetzer was able to show that MCTS out-
performs traditional minimax-based programs in this game [30].

Kozelek applied MCTS to the game Arimaa but only achieved a weak
level of play [31]. Arimaa is a very interesting game as it allows players
to make four consecutive moves in the same way as in Hero Academy.
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The branching factor of Arimaa was calculated to be 17,281 by Haskin2,
which is very high compared to single-turn games but still a lot lower
than the 7.78× 108 in Hero Academy (estimated in Section 2.3.2). One
important difference between Arimaa and Hero Academy is that pieces
in Arimaa never get eliminated, which makes it extremely difficult to
evaluate positions. Hero Academy is in contrast more like Chess as
both material and positional evaluations can be made. Kozelek showed
that short rollouts with a static evaluation function improved MCTS in
Arimaa. Transposition tables were also shown to improve the playing
strength significantly, while Rapid Action Value Estimation (RAVE), an
enhancement often used in Go, did not.

Kozelek distinguished between a step-based and a move-based
search. In a step-based search each ply in the search tree corresponds
to moving one piece one time, where one ply in a move-based search
corresponds to a sequence of steps resulting in one turn. Kozelek pre-
ferred the step-based search mainly because of its simplicity and how it
with ease can handle transpositions within turns. Interestingly, a move-
based search was used by Churchill et al. [32] and later Justesen et al.
[1] in the RTS game StarCraft to overcome the large branching factor.
The move-based searches in StarCraft is done by sampling a very low
number of possible moves and thus ignoring most of the search space.
Often heuristic strategies are among the samples of moves together with
randomly generated moves. In Arimaa it is difficult to generate such
heuristic strategies, and thus the move-based approach is likely to be
weak in this game. It seems to be a necessity in StarCraft to use the
move-based approach, since the search must find a solution within just
40 milliseconds, and in this game we do know several heuristic strate-
gies. The move-based search would simply ignore very important moves
in Arimaa that the step-based search is more likely to find. While no
comparison of these approaches in either of the games exist, it seems
that the step-based approach is unlikely to succeed in real-time games
with very large branching factors. The branching factor of combats in
StarCraft is around 8n, where n is the number of units under control,
which easily surpasses the branching factor of Arimaa.

2http://arimaa.janzert.com/bf_study/
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3.3 Artificial Neural Networks

We have now looked at two methods for searching in the game tree
and one more will be introduced when evolutionary computation is
introduced later. It seems clear, that good methods for evaluating game
states is an important asset to the search algorithms, as dept-limited
searches are popular in games with large branching factors. Creating
an evaluation function for Hero Academy seems straight forward since
material on the board, on the hand and in the deck is easy to count.
The positional value of units, and how to balance the pursuit towards
the two winning conditions in the game (destroying all units or all
crystals), are however two very difficult challenges. Instead of relying
on expert knowledge and a programmers ability to implement this,
such evaluation functions can be learned, and one method to store such
learned knowledge is in artificial neural networks or just neural networks.
Before explaining how the such knowledge can be learned, let us look a
what neural networks are.

Figure 3.3: An artificial neural network with two input neurons (i1, i2), three one-layered hidden neu-
rons (h1, h2, h3) and one output neuron (Ω). Figure is from [33].

Humans are very good at identifying patterns such as those present
in game states. An expert game player is able to quickly match these
patterns with how desirable they are and from that make solid decisions
during the game. One popular choice is to encode such knowledge into
neural networks, inspired by how a brain works. A neural network is a
set of connected neurons. Each connection links two neurons together
and has a weight parameter expressing how strong the connection is,
mimicking synapses that connect neurons in a real brain. Feedforward
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networks are among the most popular classes of neural networks and
are typically sorted in three types of layers: an input layer, one or more
hidden layers and an output layer (see Figure 3.3).

When a feedforward neural network is activated, values from the
input layer are iteratively sent one step forward in the network. The
value vj received by a neuron j is usually the sum of the output oi from
each ingoing neuron multiplied with the weight wi,j of its connection.
This is also called the propagation function:

vj = ∑
i∈I

(oi × wi,j)

where I is the set of ingoing neurons. After vj is computed, it is
passed through a so-called activation function in order to normalize the
value. A popular activation function is the Sigmoid function:

Sigmoid(x) =
1

1 + e−x

where e is a constant determining how much the values are squeezed
towards 0 and 1.

When all values have been sent through the network, the output of
the network can be extracted directly from the output neurons. A neural
network can thus be seen as a black box, as it is given a set of inputs
and returns a set of outputs, while the logic behind the computations
quickly gets complex. This propagation of values simulates how signals
in a brain are passed between neurons. The input layer can be seen as
our senses, and the output layer is our muscles that reacts to the input
we get. Artificial neural networks are of course just a simplification of
how an actual brain functions.

The output of a network solely depends on its design, hereunder the
formation of nodes and connections, called the topology, and the con-
nection weights. Using supervised learning, and given a set of desired
input and output pairs, it is possible to backpropagate the errors to cor-
rect connection weights and thus gradually learn to output more correct
results [34]. We will not go through the math of the backprogragation
method as it has not used in this thesis. One problem with the back-
propagation learning method is that it only works for a fixed topology
and determining which topology to use can be difficult when dealing
with complex problems. Another problem is that, for supervised learn-
ing to work it requires a training set of target values. A popular solution
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is to evolve both the weights and the topology through evolution which
will be described in the section about neuroevolution (see Section 3.4.3),
where examples of successful applications also are presented. To un-
derstand neuroevolution, let us first get an overview of the mechanics
and use of evolution in algorithms, as this is a widely used approach in
game AI.

3.4 Evolutionary Computation

Evolutionary computation is concerned with optimization algorithms
inspired by the mechanisms of biological evolution such as genetic
crossover, mutation and the notion survival of the fittest. The most pop-
ular of these algorithms are Genetic Algorithms (GA) first described by
Holland [35]. In GAs a population of candidate solutions are initially
created. Each solution, also called the phenotype, has a corresponding
encoding called a genotype. In order to optimize the population of so-
lutions it goes through a number of generations, where each individual
is tested using a fitness function. The least fit individuals are replaced
by offspring of the most fit. Offspring are bred using crossover and/or
mutation. In this way promising genes from fit individuals stay in the
population, while genes from bad individuals are thrown away. Like
evolution in nature, the goal is to evolve individuals consisting of genes
that make them strong in their environment. Such an environment can
be a game and the the solution can be a strategy or a neural network
functioning as a heuristic.

3.4.1 Parallelization

Three different methods for parallelizing GAs were identified by
Tomassini et al. [36] and are briefly presented in this section. In most
GA implementations, calculating the fitness function is the most time
consuming part, and thus an obvious solution is to run the fitness func-
tion concurrently for multiple individuals. Another simple method is
to run several isolated GAs in parallel, either with the same or different
configurations. GAs can easily end up in a local optima and by run-
ning multiple of these concurrently, there is a higher change of finding
either the global optima or at least several local ones. In the island model
multiple isolated populations are evolved in parallel, but at a certain
frequency promising individuals will migrate to other populations to
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disrupt stagnating populations. Another approach called the grid model
places individuals in one large grid where individuals in parallel inter-
act only with their neighbors. In such a grid the weakest individual in
a neighborhood will be replaced by an offspring of the other neighbors.
Figure 3.4 shows the different models used when parallelizing GAs.

Figure 3.4: The different models used in parallel GAs. (a) shows the standard model where only one
population exists and every individual can mate with any other. In this model the fitness function can
run on several threads in parallel. (b) shows the island model where several populations exist and
individuals can migrate to neighboring populations. (c) shows the grid model where individuals are
placed in one large grid and only interacts with their neighbors. Figure taken from [37]

3.4.2 Rolling Horizon Evolution

Evolutionary computation is usually used to train agents in a training
phase before they are applied and used in the actual game world. This
is called offline learning. Online evolution in games, on the other hand,
is an evolutionary algorithm that is applied while the agent is playing
(i.e. online) to continuously find actions to perform.

Recent work by Perez on agents in real-time environments has shown
that GAs can be a competitive alternative to MCTS [38]. He tested the
Rolling Horizon Evolutionary (RHE) algorithm for the Physical Travel-
ing Salesman (PTS) problem that is both real time and requires a long se-
quence of actions to reach the goal. RHE is a GA, where each individual
corresponds to a sequence of actions and are evaluated by performing
its actions in a forward model and finally evaluating the outcome with
an evaluation function. The algorithm continuously evolves plans for a
limited time frame, while it acts in the world. RHE and MCTS achieved
more or less similar results in the PTS problem.
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This approach is of course interesting since Hero Academy is all
about planning several actions ahead and may be an interesting alter-
native to MCTS. There is, however, the difference that Hero Academy is
adversarial, i.e. each player takes turn, where the PST problem is a single
player environment where every outcome in the future is predictable. In
Hero Academy we are not able to evolve actions for the opponent, since
we only have full control in our own turn, and the evolution is then
limited to plan five actions ahead.

3.4.3 Neuroevolution

Earlier in Section 3.3 we mentioned how neural networks can be used as
a heuristic, i.e. a game state evaluation function. One way to train such
a network is to use supervised learning by backpropagating errors, but
for this approach we need a large training set e.g. created from games
logs with human players. Since Hero Academy is played online the
developers should have access to such game logs, while we do not.
Several unsupervised learning methods exist where learning happens
by interacting with the environment. Temporal Difference (TD) learning
is a popular choice when it comes to unsupervised learning and was
used with success in 1959 by Samuel in his Checkers-playing program
[39]. Samuel’s program used a database of visited game states used
to store the learned knowledge, while this is impractical for games
with a high state-space complexity. Tesauro solved this problem in
his famous Backgammon-playing program TD-Gammon that reached a
super-human level [40] by using the TD(λ) algorithm to train a neural
network. TD(λ) backpropagates results of played games through the
network for each action taken in the game and gradually corrects the
weights. The λ parameter is used to make sure that early moves in
the game are less responsible for the outcome, while later moves are
more. The topology must however still be determined manually when
applying TD(λ). In the rest of this section the focus will be on methods
that also evolves the topology.

Neuroevolution is a machine learning method combining neural net-
works and evolutionary algorithms and has shown to be effective in
many domains. The conventional neuroevolution method has simply
been to maintain a fixed topology and evolve only the weights of the
connections. Chellapilla et al. used such an approach to evolve the
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weights of a neural network, that was able to compete with expert play-
ers in Checkers [41]. Chellapilla evolved a feedforward network with 32
input neurons, 40 neurons in the first hidden layer and 10 neurons in
the second hidden layer.

An early attempt to evolve topologies as well as weights are the
marker-based encoding scheme which, inspired by our DNA, has a se-
ries of numeric genes representing nodes and connections. The marker-
based encoding seems to have been replaced by superior approaches
developed later. Moriarty and Miikkulainen was, however, able to dis-
cover complex strategies for the game Othello using the marker-based
encoding scheme [42]. Their game playing networks had 64 output neu-
rons each expressing how strongly a move to that corresponding square
is considered. Othello is played on a 8x8 game board similar to Chess.

TWEANN (Topology & Weight Evolving Artificial Neural Network)
algorithms, are also able to evolve the topology of neural networks. The
marker-based encoding scheme described above is an early TWEANN
algorithm. Among the most popular TWEANN algorithms today is
the NeuroEvolution of Augmenting Topologies (NEAT) algorithm by
Stanley and Miikkulainen [43]. NEAT introduced a novel method of
crossover between different topologies by tracking genes with innova-
tion numbers. Each gene represents two neurons and a connection. Fig-
ure 3.5 shows how add connection and add node mutations change such
gene strings.

Figure 3.5: Examples of add connection and add node mutations in NEAT and how genes are tracked
with innovation numbers shown in the top of each gene. Genes become disabled if a new node is added
in between the connection. Figure is from [43] that also shows examples of crossover.
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The use of innovation numbers also made crossover very simple as
single or multi-point crossover easily can be applied to the genes.
When new topologies appear in a population they very rarely achieve
a high fitness value, as they often need several generations to improve
their weights and perhaps change their topology further. To protect
such innovations from being excluded from the population, NEAT in-
troduces speciation. Organisms in NEAT primarily compete for survival
with other organisms of the same specie and not with the entire popula-
tion. Another feature of NEAT, called complexification, is that organisms
are initialised uniformly without any hidden neurons and then slowly
grow and become more complex. The idea behind this is to only grow
networks if the addition actually provides an improvement. NEAT
has been successful in many real-time games such as Pac-Man [44]
and The Open Racing Car Simulator (TORCS) [45]. Jacobs compared
several neuroevolution algorithms for Othello and was most successful
with NEAT [46], which also was the only TWEANN algorithms in the
comparison.

Figure 3.6: Example of a Compositional Pattern Producing Network (CPPN) that takes two input values
x and y. Each node represents a functions that alters the value as it is passed trough the network.
Figure is from [47].

While NEAT uses a direct encoding, a relatively new variation called
Hypercube-based NEAT (HyperNEAT) uses an indirect encoding called
a Compositional Pattern Producing Network (CPPN), which essentially
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is a network of connected functions. An example of a CPPN is shown
on Figure 3.6. In HyperNEAT it is thus the CPPNs that are evolved
which is then used to distribute the weights to a fixed network topology.
The input layers forms a two-dimensional plane and thus becomes di-
mensionally aware. This feature is advantages when it comes to image
recognition as neighboring pixels of an image are highly related to each
other. Risi and Togelius argues that this dimensional awareness can be
used to learn the symmetries and relationships on a game board [48],
but to our knowledge only few attempts have been made and with
limited success.

Recent work on evolving game playing agents with neuroevolution
for Atari games have shown, that NEAT was the superior of several
compared methods, and it was even able to beat human scores in three
of the games [11]. The networks were fed with three layers of input.
One with the raw pixel data, another with object data and the one with
random noise. The HyperNEAT method was however shown to be the
only useful method when only the raw pixel layer was used.





Chapter 4

Approach

This chapter will explain our approach of implementing several AI
agents for Hero Academy using the theory from the previous chapter.
This have resulted in agents with very diverse behaviors. This chapter
will first describe some main functionalities that were used the agents
followed by a description of their implementation and enhancements.

4.1 Action Pruning & Sorting

The Hero AIcademy API offers the method possibleActions
(a:List<Action>) that fills the given list with all available actions of
the current game state. This method simply iterates each card on the
hand and each unit on the game board and collects all possible actions
for the given card or unit. Several actions in this set will produce the
same outcome and can thus be pruned. A pruning method were im-
plemented that removes some of these actions and thus performs hard
pruning.

First, identical swap card actions are pruned, which are seen when
several identical cards are on the hand. Next, a cast spell action is
pruned if another cast spell action exists that can hit the same units.
E.g. a cast spell action that targets the wizard on square (1,1) and the
archer on (2,1) can be pruned, when another cast spell action exists that
can hit both the wizard, the archer and the knight on (2,2). The targets
of the second action is thus a super set of the targets of the first. It is not
guaranteed that the most optimal action survives this pruning, but it is
a good estimate as it is based on both the amount of damage it inflicts
and which units it can target. If a cast spell action has no targets on the
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game board, it is also pruned.

A functionality to sort actions were also implemented based on a
naive heuristic that analyses the current game state and rates each action
based on some rules. The following rules were used that give a value v
based on the action type:

Cast spell
v = |T| × 300− 500 where T is the set of targets.

Equip (revive potion)
If uhp = 0 then v = umaxhp + |I| × 200 else v = umaxhp − uhp − 300
where uhp, umaxhp and I is the health points, maximum health
points and the set of items of the equipped unit respectively, thus
preferring to use a revive potion on units with items and low
health.

Equip (scroll, dragonscale, runemetal & shining helmet)
v =

upower×uhp
umaxhp

, thus preferring to equip units if they already are
powerful and have full health.

Unit (attack)
If stomping then v = dmaxhp × 2 else v = upower where dmaxhp is the
maximum health of the defender. 200 is added to v if the attacker
is a wizard due to its chain attack.

Unit (heal)
If uhp = 0 then v = 1400 else v = umaxhp − uhp.

Unit (move)
If stomping then v = dmaxhp else if the new square is a power,
defense or assault square v = 30 else v = 0.

For all other actions v = 0. This action sorting functionality is used
by several of the following agents.

4.2 State Evaluation

A state evaluation function is used as a heuristic by several of the imple-
mented search algorithms. Experiments with several evaluation func-
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tions were performed, but one with a great amount of domain knowl-
edge showed the best results throughout the experiments. This evalua-
tion function named HeuristicEvaluation in the project source code will
be described in this section.

The value of a game state is measured by the difference in health
points of remaining units both on the hand, in the deck and on the
game board by each player. The health point value of a unit is however
multiplied by several factors. The final value v of a unit u on the game
board is:

v = uhp + umaxhp × up(u)︸ ︷︷ ︸
standing bonus

+

equipment bonus︷ ︸︸ ︷
eq(u)× up(u) + sq(u)× (up(u)− 1)︸ ︷︷ ︸

square bonuse

where up(u) = 1 if uhp = 0 and up(u) = 2 if uhp > 0. eq(u) adds
a bonus to units carrying equipment. E.g. 40 points are added if an
archer carries a scroll while a knight is given −40 points for the same
item, since scrolls are much more useful on an archer. These bonuses
can be seen in Table 4.1. sq(u) adds bonuses to units on special squares
which can bee seen in Table 4.2.

Dragonscale Runemetal Shining helmet Scroll
Archer 30 40 20 50
Cleric 30 20 20 30
Knight 30 -50 20 -40
Ninja 30 20 10 40
Wizard 20 40 20 50

Table 4.1: Bonus added by theHeuristicEvaluation to units with items.

Units on the hand and in the deck are given the value v = umaxhp ×
1.75, which is usually lower that values given to units on the game
board. This makes a game state with many units on the board more
valuable. Infernos are given v = 750 and potions v = 600, which makes
these items expensive to use.
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Assault Deploy Defense Power
Archer 40 -75 80 120
Cleric 10 -75 20 40
Knight 120 -75 30 30
Ninja 50 -75 60 70

Wizard 40 -75 70 100

Table 4.2: Bonus added by theHeuristicEvaluation to units on special squares.

4.3 Game State Hashing

A function that transforms a game state into a 64 bit integer was re-
quired by the implemented transposition tables as it reduces the mem-
ory requirements significantly. Clever solutions such as Zobrist hashing
were not implemented, because game states in Hero Academy are much
more complex, and this makes the implementation non-trivial. Instead
a more classic Java hashing approach was applied, which can bee seen
on below. A relatively high prime number was used to decrease the
number of collisions when only small changes are made to the game
state. No collision tests were, however, made to prove that this worked.

pub l i c long hashCode ( ) {
f i n a l i n t prime = 1193 ;
long r e s u l t = 1 ;
r e s u l t = prime * r e s u l t + APLeft ;
r e s u l t = prime * r e s u l t + turn ;
r e s u l t = prime * r e s u l t + ( i sTermina l ? 0 : 1) ;
r e s u l t = prime * r e s u l t + p1Hand . hashCode ( ) ;
r e s u l t = prime * r e s u l t + p2Deck . hashCode ( ) ;
r e s u l t = prime * r e s u l t + p2Hand . hashCode ( ) ;
r e s u l t = prime * r e s u l t + p1Deck . hashCode ( ) ;

f o r ( i n t x = 0 ; x < map . width ; x++)
f o r ( i n t y = 0 ; y < map . he ight ; y++)

i f ( un i t s [ x ] [ y ] != nu l l )
r e s u l t = prime * r e s u l t + un i t s [ x ] [ y ] . hash (x , y ) ;

r e turn r e s u l t ;
}

Listing 4.1: GameState.hashCode()
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4.4 Evaluation Function Modularity

Several algorithms were implemented in this project using a game
state evaluation function. To increase the modularity an interface
called IStateEvaluator was made with the method signature double
eval(s:GameState, p1:boolean) that must be implemented to return the
game state evaluation for player 1 if p1 = true and for player 2 if
p1 = f alse. Two important implementations of this interface are the
HeuristicEvalutor (described in Section 4.2) and the RolloutEvaluator
with the following contructor: RolloutEvaluator(rolls:int, depth:int, pol-
icy:AI, evaluator:IStateEvaluator). Again, any IStateEvaluator can be
plugged into this implementation, which is use when a terminal node,
or its depth-limit, is reached. Any AI implementation can in a similar
way be used as the policy for the rollouts. Additionally, it can be depth
limited to depth and multiple sequential rollouts equal to rolls will be
performed whenever it is invoked.

4.5 Random Search

Two agents that play randomly were implemented. They were used
in the experiments as baseline agents, but also as policies in roll-
outs. The first random agent simply selects a random action with
a uniform probability from the set of actions returned by possibleAc-
tions(a:List<Action>). This agent will be refered to as RandomUniform.
The policies used in rollouts should be optimized to be as fast as pos-
sible. Instead of identifying all possible actions, another method is to
first make a meta-decision about what kind of action to perform. It will
decide whether to make a unit action or a card action and thus simplify
the search for actions. This approach is implemented in the agent that
will be referred to as RandomMeta. If RandomMeta decides to take a unit
action, it will traverse the game board in a scrambled order until a unit
under control is found, where after it will search for possible actions just
for that unit and return one randomly.

An ε-greedy agent was also implemented. At some probability ε it
will pick the first action after action sorting (see Section 4.1), imitating
a greedy behavior. Otherwise it will simply pick a random action. This
agent is often used as policy in rollouts by some of the following agents.
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4.6 Greedy Search

Greedy algorithms always take the action that gives the best immediate
outcome. Two different greedy algorithms were implemented which are
described in this section.

4.6.1 Greedy on Action Level

GreedyAction is a simple greedy agent that makes a one-ply search,
where one ply corresponds to one action, and uses the HeuristicEval-
utor as a heuristic. It also makes use of action pruning to avoid bad
use of the inferno card. The Hero AIcademy engine is used as a for-
ward model to obtain the resulting game states. GreedyAction is used as
a baseline agent in the experiments and will be compared to the more
complex implementations.

4.6.2 Greedy on Turn Level

GreedyTurn is a more complex greedy agent that makes a five-ply search
which corresponds to one turn of five actions. The search algorithm
used is a recursive depth-first search very similar to minimax and will
also produce the exact same results, given the same depth-limit. During
this search, the best action sequence is stored together with the heuristic
value of the resulting game state. The stored action sequence will be
returned when the search is over. This agent will find the most optimal
sequence of actions during its turn, assuming the heuristic leads to op-
timal play. Since the heuristic used is mostly based on the health point
difference between the two players, it will most likely lead to a very
aggressive play. It will, however, not be able to search the entire space
of actions within the six second time budget we have given the agents
in the experiments. In Section 2.3.2 we estimated the average branching
factor of a turn to be 7.78× 108 which is the average number of moves
this search will have to consider to make an exhaustive search. Three
efforts were made to optimize the performance of the search: action
pruning is applied at every node of the search, a transposition table is
used as well as a simple parallelization method.

A transposition table was implemented to reduce the size of the
search tree. The key of each entry is the hash code of a game state. The
value of each entry is actually never used since already visited nodes
are simply ignored.
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Parallelization was implemented by first sorting the actions available
at the root level and then assigning them one by one to a number of
threads equal to the number of processors. Each thread is then respon-
sible for calculating the value of the assigned action. The threads use the
same shared transposition table that can only be accessed by one thread
at the time.

In order to make this search an anytime algorithm, threads are simply
denied access to more actions when the time budget is used and the best
found action sequence is finally returned.

4.7 Monte Carlo Tree Search

The MCTS algorithm was implemented with an action based approach,
meaning that one ply in the search tree corresponds to one action and
not one turn. The search tree thus has to reach a depth of five to reach
the beginning of the opponents turn. The search tree is constructed
using both node and edge objects to handle parallelization methods.
Both nodes and edges have a visit count, while only edges hold values.
Action pruning and sorting are applied at every expansion in the tree,
and only one child are added in each expansion phase. A child node
will not be selected until all its siblings are added. The UCB1 formula
were changed to the following to handle nodes and edges:

UCB1edges = X j + 2Cp

√
2 ln n

ej

where ej is now the visit count of the edge e, going from node n,
instead of the child node. For the backpropagation the descent-path
only approach was used because of its simplicity. In order to handle
two players with multiple actions, the backpropagation implements an
extension of the BackupNegamax method (see Algorithm 1). This back-
propagation algorithm is called with a list of edges corresponding to
the traversal during the selection phase, a ∆ value corresponding to the
result of the simulation phase and a boolean p1 which is true if player
one is the max player and false if not.

A transposition table was added to MCTS with game state hash
codes as keys and references to nodes as values. When an already
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Algorithm 1 Backpropagation for MCTS in multi-action games
1: procedure BackupMultiNegamax(Edge[] T, Double ∆, Boolean p1)
2: for Edge e in T do
3: e.visits++
4: if e.to is not null then
5: e.to.visits++
6: if e. f rom is root then
7: e. f rom.visits++
8: if e.p1 = p1 then
9: e.value+=∆

10: else
11: e.value-=∆

visited game state is reached during the expansion phase, the edge is
simply pointed to the existing node instead of creating a new.

Both leaf parallelization and root parallelizaion were implemented.
A LeafParallelizer was made that implements the IStateEvaluator inter-
face, and is set up with another IStateEvaluator, that will be cloned
and distributed to a number of threads. The root parallelization is, in
contrast, implemented as a new AI implementation and works as a kind
of proxy for several concurrent MCTS agents. The root parallelized
MCTS merges the root nodes from the concurrent threads and then
returns the best action from this merged tree.

AI agents in Hero AIcademy must return one action at a time until
their turn is over. In the experiments performed, each algorithm were
given a time budget b to complete each turn and thus two approaches
came apparent. The first approach is simply to spend b

5 time on each
action while the second approach will spend b time on finding the entire
action sequence and thereafter perform each one by one. The second
approach was used to make sure the search will reach a decent depth.
This approach is actually used by all the search algorithms.

4.7.1 Non-explorative MCTS

Three novel methods are introduced to handle very large game trees in
multi-action games. The first and simplest method is to use an explo-
ration constant Cp = 0 in combination with deterministic rollouts using
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a greedy heuristic as policy. It might seem irrational not to do any explo-
ration at all, but since all children are expanded and evaluated at least
once, a very controlled and limited form of exploration will occur. Addi-
tionally, as the search progresses into the opponents turn, counter-moves
may be found that will force the search to explore other directions. The
idea is thus to only explore when promising moves become less promis-
ing. A non-explorative MCTS is not guaranteed to converge towards
the optimal solution, but instead tries to find just one good move that
the opponent cannot counter. The idea of using deterministic rollouts
guided by a greedy heuristic, might be necessary when no exploration
happens, since most nodes are visited only once. It would have a huge
impact if an action is given a low value due to one unlucky simulation.

4.7.2 Cutting MCTS

Because of the enormous search space, MCTS will have trouble reaching
a depth of ten plies during its search. This is critical since actions will
be selected based on vague knowledge about the possible counter-moves
by the opponent, that takes place between ply five and ten. To increase
the depth in the most promising direction, a progressive pruning strategy
called cutting is introduced. The cutting strategy will remove all but the
most promising child c from the tree after b

a time has past, where b is
the time budget and a is the number of actions allowed in the turn (five
in Hero Academy). When 2× ( b

a ) time has past all but the most promis-
ing child of c are removed from the tree. This is done continuously a
times down the tree. The downside of this cutting strategy is that there
is no going back when actions have been cut. This can lead to an ac-
tion sequence in Hero Academy that will make a unit charge towards
an opponent and then retreat back again in the same turn. This should
however be much better than charging forward to leave a unit unpro-
tected as a result of insufficient search for counter-moves. An example
of the cutting approach in three steps is shown on Figure 4.1.

4.7.3 Collapsing MCTS

Another progressive pruning strategy that deals with the enormous
search space in multi-action games is introduced called the collapsing
strategy. When a satisfying number of nodes K are found at depth d,
where d is equal to the number of actions in a turn, the tree is collapsed
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Figure 4.1: An example of how nodes are progressively cut away using the cutting strategy in three
steps to force the search to reach deeper plies. (a) After some time all nodes except the most promising
in ply one are removed from the tree. (b) The search continues where after nodes are removed from
ply two in a similar way. (c) Same procedure but one ply deeper.

so that nodes and edges between depth 1 and d not leading to a node at
depth d are removed from the tree. An example is shown on Figure 4.2
where d = 5. No children are added to nodes that have previously been
fully expanded.

The purpose of the collapsing strategy is to stop exploration in the
first part of the tree and focus on the next part. The desired effect in
Hero Academy is, that after a number of possible action sequences are
found the search will explore possible counter-moves.

4.8 Online Evolution

Genetic algorithms seem to be a promising solution when searching in
very large search spaces. Inspired by the rolling horizon evolution algo-
rithm an online evolutionary algorithm was implemented, where depth-
limited rollouts are used as the fitness function. A solution (phenotype)
in the population is a sequence of actions that can be performed in the
agents first turn. A fitness function that rates a solution by evaluating
the resulting game state, after the sequence of actions are performed,
would be very similar to the GreedyTurn agent, but possibly more effi-
cient. Instead, the fitness function is using rollouts with a depth-limit
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Figure 4.2: Grayed out nodes are removed due to the collapsing method, which is set up to collapse
when five nodes are found in depth 5. The newly expanded node that initiates this collapse is shown
with dashed lines.

of one turn to also include the possible counter-moves available in the
opponents turn. The resulting game states reached by the rollouts are
here after evaluated using the HeuristicEvaluator.

Because the rollouts take place only in the opponents turn, the min-
imum value of several rollouts are used instead of the average. In this
way, individuals are rated by the worst known outcome of the oppo-
nents turn. This will imitate a two-ply minimax search as the rollouts
are minimizing and the genetic algorithm is maximizing. If an individ-
ual survives for several generations, the fitness function will regardless
of the existing fitness value continue to perform rollouts. It will, how-
ever, only override the existing fitness value if a lower one is found.
The fitness value is thus converging towards the actual value, which is
equal to the worst possible outcome, as it is tested in each generation.
Individuals that are quickly found to have a low value will, however,
be replaced by new offspring. The rollouts use the ε-greedy policy and
several ε values are tested in the experiments.

An individual might survive several generations before a good
counter-move is found that will decrease its fitness value, resulting in
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Figure 4.3: A depiction of how the phenotype spans five actions, i.e. the agents own turn, and the
rollouts in the fitness function spans the opponents turn.

the solution to be replaced in the following generation. To avoid that
such a solution should re-appear later and consume valuable computa-
tion time, a table is introduced to store obtained fitness values. The key
of each entry is the hash code of the game state reached by a solutions
action sequence, and the value is the minimum fitness value found for
every solution resulting in that game state. This table also functions as
a kind of transposition table, since multiple solutions resulting in the
same game state will share a fitness value. These solutions are still al-
lowed in the population as their different genes can help the evolution to
progress in different directions, but when a good counter-move is found
for one of them, it will also affect the others. We will refer to this table
as a history table instead of a transposition table, as it serves multiple
purposes.

4.8.1 Crossover & Mutation

Parents are paired randomly from the surviving part of the population.
The implemented crossover method implements a uniform crossover,
that for each gene picks from parent a with a probability of 0.5 and
otherwise from parent b. This however has some implications in Hero
Academy as picking one action from a might make another action from
b illegal. Therefore a uniform crossover with the if-allowed rule is intro-
duced. This rule will only add an action from a parent if it is legal. If
an action is illegal, it will try to pick from the other parent, but if that
also is illegal, a random legal action is selected. To avoid too many ran-
dom actions in the crossover mechanism, the next action for each parent
are also checked before a random action is used. An example of the
crossover mechanism is shown on Figure 4.4.
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Figure 4.4: An example of the uniform crossover used by the online evolution in Hero AIcademy. Two
parent solutions are shown in the top and the resulting solution after crossover in the bottom. Each
gene (action) are randomly picked from one of the parents. Colors on genes represent the type of
action they represent. Healing actions are green, move actions are blue, attack actions are red and
equip actions are yellow.

Mutation selects one random action and swaps it with another legal
action. This change can however make some of the following actions
illegal. When this occur the following illegal actions are simply also
swapped with random legal actions.

If illegal action sequences were allowed, the population would prob-
ably be crowded with these and only very few actual solutions might be
found. The downside of only allowing legal solutions is, however, that
much of the computation time is spend on the crossover and mutation
mechanisms, as they need to continuously use the forward model for
gene generation.
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4.8.2 Parallelization

Two parallelization methods for the online evolution were implemented.
The first is simple, as the LeafParallelizer, also used by the MCTS agent,
can be used by the online evolution to run several concurrent rollouts.
The online evolution was also implemented with the island paralleliza-
tion model, where several evolutions run concurrently each representing
an island. In every generation the second best individual is sent to its
neighboring island. Each island uses a queue in which incoming in-
dividuals are waiting to enter. Only one individual will enter in each
generation unless the queue is empty. In this way genes are spread
across islands while the most fit individual remains. A simple pause
mechanism is added if one thread is running faster than others and
ends up sending more individuals than it is receiving. In this imple-
mentation islands were allowed to be behind with five individuals, but
such a number should be found experimentally.

4.9 NEAT

This section will describe our preliminary work of evolving neural net-
works as game state evaluators for Hero Academy. Some discussions
of other approaches are also presented in the Conclusions chapter later.
Designing game state evaluators by hand for Hero Academy turned out
to be more challenging than expected. The material evaluation seems
fairly easy, while positional evaluation remains extremely challenging.
Positioning units outside range of enemy units should probably be good
to protect them, while being inside range of enemy units can, in some
situations, put pressure on the opponent. Identifying when this is a
good idea, and when it is not, is extremely difficult to describe manu-
ally, even though human players are good at identifying such patterns.
This suggest, that we should try to either evolve or train an evaluation
function to do this task. In the work presented here, the NeuroEvolution
of Augmenting Topologies (NEAT) algorithm was used to evolve neural
networks as game state evaluators. The first experiments were made for
a smaller game board of only 5x3 squares (see Figure 4.5). This makes
the size of the input layer smaller, as well as the time spend on each
generation in NEAT. The software package JNEAT1 by Stanley was used
in the experiments described.

1http://nn.cs.utexas.edu/?jneat
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Figure 4.5: The small game board used in the NEAT experiments.

Experiments with the small game board went pretty well, as we will
see in the next chapter, and thus experiments with the standard game
board were also made.

4.9.1 Input & Output Layer

Two different input layers were designed with different complexities
that were tested separately. The simplest input layer had the following
five inputs:

1. Total health points of crystals owned by player 1.

2. Total health points of crystals owned by player 2.

3. Total health points of units owned by player 1.

4. Total health points of units owned by player 2.

5. Bias equal to 1.

These inputs were all normalized to be between 0 and 1. This in-
put layer was designed as a baseline experiment to test whether any
sign of learning can be observed. A difficult challenge when it comes
to designing a state evaluator for Hero Academy is how to balance the
pursuit towards the two different winning conditions. Interesting solu-
tions might be learned by this simple input layer design. The other input
layer design is fed with practically everything from the game state. The
first five inputs are identical to the simple input layer, where after the
following 13 inputs are added sequentially for each square on the board:
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1. If square contains archer then 1 else 0

2. If square contains cleric then 1 else 0

3. If square contains crystal then 1 else 0

4. If square contains dragonscale then 1 else 0

5. If square contains knight then 1 else 0

6. If square contains ninja then 1 else 0

7. If square contains runemetal then 1 else 0

8. If square contains shining helmet then 1 else 0

9. If square contains scroll then 1 else 0

10. If square contains wizard then 1 else 0

11. If square contains a unit then its health points normalized else 0

12. If square contains a unit controlled by player 1 then 1 else 0

13. If square contains a unit controlled by player 2 then 1 else 0

Ten inputs are added after these, describing which cards the current
player has on the hand. Again, 1 is added if the player has an archer
and 0 if not, and so on for each card type.

The final input layer ends up with 210 neurons for the 5x3 game
board and for the standard sized game board the size is 600 neurons.
Some efforts were made on reducing this number without loosing infor-
mation, but no satisfying solution was found. The output layer simply
consist of just one neuron, and the activation value of this neuron is the
networks final evaluation of the game state.
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Experimental Results

This chapter will describe the main experiments performed in this thesis
and present the results. Experiments were run on a Lenovo Ultrabook
with an Intel Core i7-3517U CPU with 4 x 1.90GHz cores and 8 GB of
ram, unless other is specified. The Hero AIcademy engine was used to
run the experiments.

Experiments that compare agents consist of 100 games, where each
agent plays as the starting player 50 games each. Winning percentages
were calculated, where draws count as half a win for each player. A
game ends in a draw if no winner is found in 100 turns. A confidence
interval is presented for all comparative results with a confidence level
of 95%. Agents were given a 6 second time budget for their entire turn
unless other is specified. The first part of this chapter will describe the
performance of each implemented algorithm individually, including ex-
periments leading to their final configurations. In the second part a
comprehensive comparison of all the implemented agents will be pre-
sented. The best agent were tested in 111 games against human players,
and the results from these experiments are presented in the end.

The Hero AIcademy engine was set to run deterministic games only
when two agents were compared. The decks of each player were still
randomly shuffled in the beginning, but but every card draw were deter-
ministic. This was done because no determinization strategy was imple-
mented for MCTS. The experiments with human players was however
run with random card draws, as it otherwise would be an advantage for
the AI agents, as they can use the forward model to predict the future.



54 Chapter 5. Experimental Results

5.1 Configuration optimization

Several approaches exist to optimize the configuration of an algorithm.
A simple approach was used for our algorithms, where several values
for each setting where compared one by one. This method does not
guarantee to find the best solution, as each setting can be dependent on
each other, but it does at the same time reveal interesting information
about the effect of each setting. Attempts to optimize the configurations
of the MCTS and online evolution agents are described in this section.
MCTS was the most interesting to experiment with, as several of the
settings have huge impact on its performance, in contrast to the online
evolution that seems to reach its optimal playing level regardless of some
of its settings.

5.1.1 MCTS

The initial configuration of the MCTS implementation was set to the
following:

• Rollout depth-limit: None

• Progressive pruning (cutting/collapsing): None

• Default policy: RandomMeta (equivalent to ε-greedy, where ε = 0)

• Tree policy: UCB1edges with exploration constant Cp = 1√
2

• Parallelization: None

• Transposition table: No

• Action pruning: Yes

• Action sorting: Yes

We will refer to the algorithm using these settings as vanilla MCTS, a
term also used by Jacobsen et al. [49], as it aims to use the basic settings
of MCTS. Here after, the value of each setting is found experimentally
one by one. The goal of the first experiment was to find out if a depth
limit on rollouts improves the playing strength of MCTS. 100 games
were played against GreedyAction for each setting. Depth limits of 1, 5,
10 and infinite turns were tested. A depth-limit of infinite is equivalent
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to not having a depth-limit. The results, which can be seen in Figure 5.1,
show that short rollouts increase the playing strength of MCTS and that
a depth-limit of one is preferable. Additionally, this experiment shows
that even with the best depth-limit setting vanilla MCTS performs worse
than GreedyAction.
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Figure 5.1: The win rate of vanilla MCTS against GreedyAction with four different depth limits. The
depth limit is in turns. With no depth-limit (INF) no games were won at all. Error bars show the 95%
confidence bounds.

The second experiment tries to find the optimal value for ε when the
ε-greedy policy is used in the rollouts. This was tested for the vanilla
MCTS as well as for the two progressive pruning strategies and the non-
explorative approach. Table 5.1 shows the results of each method with
ε = 0.5 and ε = 1 playing against itself with ε = 0.

MCTS variant ε = 0.5 ε = 1
Vanilla 55% 39%
Non-expl. 76% 82%
Cut 57% 55.5%
Collapse 48% 28%

Table 5.1: Win percentage gained by adding domain knowledge to the rollout policy against itself with
ε = 0. ε is the probability that the policy will use the action sorting heuristic instead of a random
action.

Interestingly, the non-explorative approach prefers a ε = 1, while the
other methods prefer some random exploration in the rollouts. It was,
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however, expected that the non-explorative approach would not work
well with completely random rollouts.

The playing strength of vanilla MCTS was clearly unimpressive even
with a depth-limit of one turn. The two progressive pruning methods
and the non-explorative MCTS were tested in 100 games each against
vanilla MCTS. Each algorithm, including the vanilla MCTS, used a roll-
out depth-limit of one. The results, which can be seen on Figure 5.2,
shows that both the non-explorative MCTS and the cutting MCTS were
able to win 95% and 97.5% of the games, respectively. The collaps-
ing strategy showed, however, no improvement with only 49% wins. A
K = 20× t, where t is the the budget, was used for the collapsing MCTS.
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Figure 5.2: The win rates of the non-explorative MCTS, cutting MCTS and collapsing MCTS against the
vanilla MCTS, all with a rollout depth-limit of one turn. Error bars show the 95% confidence bounds.

These three methods: cutting, collapsing and non-explorative MCTS,
have tremendous impact on the search tree each in their own way. In
each turn during all 300 games from the last experiment, statistics were
collected about the minimum, average and maximum depth of leaf
nodes in the search tree. The averages of these are visualized on Fig-
ure 5.3, where the bottom of each bar shows the lowest depth, the top
of each bar shows the maximum depth and the line in between shows
the average depth. The depths reached by the collapse strategy are very
identical to the vanilla MCTS, which indicates that these two method
are themselves very similar. It might be because the parameter K was
set too high, and then collapses became too rare.

The number of iterations for each method are shown on Figure 5.4,
showing that MCTS is able to perform hundred of thousands rollouts
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Figure 5.3: A representation of the depths reached by the different MCTS methods. Each bar shows the
range between the minimum and maximum depths of leaf nodes in the search tree while the line in be-
tween shows the average depth. These values are averages calculated from 100 games for eachmethod
with a time budget of 6 seconds. It is thus the average minimum depth, average average depth and
average maximum depths presented. The standard deviation for all the values in this representation
are between 0.5 and 1.5.

within the time budget of six seconds. The large standard deviation is
probably due to the fact that the selection, expansion and simulation
phases in MCTS become slower when more actions are available to the
player, and as we saw on Figure 2.6, this number is usually very low in
the beginning of the game and high during the mid game.
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Figure 5.4: The number of iterations for each MCTS method averaged over 100 games with a time
budget of 6 seconds. The error bars show the standard deviations.

Both the non-explorative MCTS and the cutting MCTS showed sig-
nificant improvement. An experiment running these two algorithms
against each other showed that the non-explorative MCTS won 67.0%
against the cutting MCTS with a confidence interval of 9%.
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Since the non-explorative MCTS uses determinstic rollouts, both
leaf and root parallelization does not make sense to apply. With leaf
parallelization each concurrent rollout would reach the same outcome
and with root parallelization each tree would be identical, except that
some threads that were given more time by the scheduler would be
slightly larger. Tree parallelization were not implemented but would
make sense to apply to the non-explorative MCTS, as it would add
a new form of exploration while maintaining an exploration constant
of zero. The cutting MCTS showed no significant improvement when
leaf parallelization were applied while root parallelization actually de-
creased the playing strength, as it only won 2% against the cutting
MCTS without parallelization.

Experiments were performed to explore the effects of the adding a
transposition table with the UCB1edges formula to the non-explorative
MCTS. A win percentage of 62.5% was achieved with a transposition
table against the same algorithm without a transposition table. The
average and maximum depths of leaf nodes were increased by around
one ply. No significant change were however observed when applying
the transposition table to the cutting MCTS.

The best settings found for MCTS in the experiements described in
this section are the following:

• Rollout depth-limit: 1 turn

• Progressive pruning (cutting/collapsing): None

• Default policy: Greedy (equivalent to ε-greedy, where ε = 1)

• Tree policy: UCB1edges with an exploration constant Cp = 0

• Parallelization: None

• Transposition table: Yes

• Action pruning: Yes

• Action sorting: Yes
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5.1.2 Online Evolution

Several experiments were performed to optimize the configurations
for the online evolution agent. These experiments were head to head
matchups between two online evolution agents with a different setting,
each given a three second time budget. Most of these experiments
showed no increase in the playing strength by changing the settings,
while some only showed small improvements. The reason might be
because the agent is able to find a good solution within the three second
time budget regardless of changes of its configuration.

No significant improvement over the other was found when apply-
ing 1, 2, 5 or 10 sequential rollouts to the fitness function. However,
when applying 50 rollouts the win percentage decreased to 27% against
a similar online evolution agent with just 1 rollouts.

The online evolution used the ε-greedy policy for its rollouts. No
significant improvement was seen when using ε = 0, ε = 0.5 or ε = 1.
This was a bit surprising. Additionally, applying rollouts instead of
the HeuristicEvaluation as heuristic provided only an improvement of
54%, which is insignificant with a confidence interval of 10%. The
history table gave a small, but also insignificant, improvement with a
win percentage of 55.5%.

Applying the island parallelization showed a significant improve-
ment of 63%, when a time budget of 2 seconds were used, and a 61%
improvement when a time budget of 1 second were used. Figure 5.5
shows the progress of four parallel island evolutions, where immigra-
tion of the next best individual happens in every generation.

With a time budget of six seconds the evolutions are able to com-
plete an average of 1217 (with a standard deviation of 419) generations.
The most fit individual found on each island had an average age of
60 generations, but with a standard deviation 339. The high deviation
might be due the end game, where the best move is found early, and a
high number of generations are possible, due to game states with very
few units.

The best configuration found for the online evolution agent turned
out to be the following:
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Figure 5.5: The progress of four parallel online evolutions where the x-axis is time in generations and
the y-axis is the fitness value of the best solution found. The island parallelizationmethod enables gene
sharing between threads and can be seen on the figure as progressions happen almost simultaneously.

• Population size: 100

• Mutation rate: 0.1

• Survival threshold: 0.5

• Fitness function: Rollouts (use minimum obtained outcome)

– Rollouts: 1
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– Depth limit: 1 turn

– Policy: ε-greedy where ε = 0.5.

– History table: Yes

• Parallelization: Island parallelization with immigration of second
best individual each generation.

5.1.3 NEAT

The two input layer designs described in Section 4.9 will be referred to
as the simple network, with 5 input neurons, and the complex network with
210 input neurons for the small game board and 600 input neurons for
the standard game board. The networks were only evolved to play as
the starting player. The fitness function used in JNEAT simply played 20
games using a neural network against the ε-greedy agent and returned
the win rate. Initially, ε was set to 0 to produce a completely random and
thus very easy opponent to train against. As soon as a win rate of 100%
was reached, ε would be incremented by 0.05 to give further challenge
to the trained networks. This approach was inspired by how Togelius
et al. evolved neural networks to play Super Mario on gradually more
difficult levels [50]. An initial population size of 64 individuals were
used, and a complete list of all the JNEAT parameters can be seen in
Appendix A. Figure 5.6 shows how ε grew as the networks evolved. It
is important to stress that e does not express the actual win rate of the
best network against ε-greedy but simply tells that one individual was
able to win 20 games in a row against it.

The experiment for the 5x3 game board ran on the Lenovo laptop,
while the experiment on the 9x5 game board ran on a server with eight
2.9 GHz processor cores. Each experiment took three to four days before
it was stopped.

The simple network was able to reach an ε-level of 0.85 in just 38 gen-
erations on the 5x3 game board. It is easy to imagine that this network
simply tries to increase the health points of crystals and units under
control while decreasing the health points of opponents. The results
indicate that these features alone are not enough to reach a good play-
ing level, as the evolution ran for 3817 generations without reaching an
ε-level of 1.

The complex network reached the ε-level of 1 in 586 generations on
the 5x3 game board, and the ε-greedy agent with ε = 1 was finally beat
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Figure 5.6: The ε-value used by the fitness function in each generation of the NEAT experiments. The
fitness function plays the individuals 20 times against the ε-greedy agent and returns the win rate.
When a win rate of 100% is reached, ε gets incremented by 0.05.

20 times in a row in the 655th generation. The best network of that
generation contained 299 neurons in total with 210 in the input layer,
88 in the hidden layer and 1 in the output layer. The complex network
on the 9x5 game board did, however, only reach ε = 0.9 in the 746
generations it ran.

Agent Network Game board Win percentage
NEAT simple 5x3 32.92%
NEAT complex 5x3 77.66%
NEAT complex 9x5 48.0%
GreedyAction - 5x3 51.64%

Table 5.2: Win percentages of the evolved NEAT agents and the GreeyAction agent as starting players
in 10,000 games (only 100 on the 9x5 game board) against the GreedyAction agent (not starting).

To test the actual win percentage of the evolved NEAT agents, they
were played 10,000 times each on the 5x3 game board and 100 times on
the 9x5 game board against the GreedyAction agent. Since the NEAT
agent always starts, it could have an advantage and thus the Greedy-
Action agent is also included in the comparison, where it also always
starts. The results are shown on Figure 5.2 and clearly conclude that the
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NEAT agent using the complex approach have reached a level, where
it is superior to the GreedyAction agent on the 5x3 game board, while
the simple network approach is much weaker. The same results was not
achieved for the 9x5 game board, where the evolved network won 48%
of the games. The results with the GreedyAction agents indicate, that
the advantage of starting is insignificant, at least for the strategy applied
by this agent.

5.2 Comparisons

Each of the implemented agents with their optimized configurations
were tested against each other and against the baseline agents. The
results are shown in Table 5.3.

Random G-Action G-Turn NE-MCTS OE
GreedyAction 100% 46.5% 5% 7.5%
GreedyTurn 100% 53.5% 25% 9%
NE-MCTS 100% 95% 75% 42.5%
OE 100% 92.5% 91% 57.5%

Table 5.3: Win percentages of the agents listed in the left-most column. G are short for greedy, NE for
non-explorative and OE for online evolution.

The results show, that both the online evolution and NE-MCTS
agents are significantly superior to the greedy baseline agents. We ex-
pected the GreedyTurn agent to be much better than the GreedyAction
agent, but it only achieved a win percentage of 53.5%. When observing
a game between the two it became apparent why, as GreedyTurn mostly
charges with one unit towards the opponent to make a very effective
attack. This often leaves the attacking unit defenseless in the opponent’s
territory. The GreedyAction agent cannot make forward planning and
simply attacks if possible and otherwise tries to optimize its immediate
position by deploying units, healing and equipping units with items.
The difference in strategies between the GreedyAction agent and the
GreedyTurn agent might also be the reason why NE-MCTS is the best
agent against GreeyAction while the online evolution is the best agent
against GreedyTurn. The results also show that a completely random
agent is useless in Hero Academy with zero wins in all the experiments.
This seems to be because it waste actions on useless move actions and
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very rarely attacks. The number of available move actions are usually
much higher than the number of available attack actions, and thus sta-
tistically a move action is selected by the random agents.

5.2.1 Time budget

An interesting question is how fast the different algorithms reach their
optimal play, and if their playing strengths continue to increase as they
are given more time. To approach an answer to this question for the
NE-MCTS and the online evolution, they were matched up with various
time budgets against the GreedyTurn agent, which had a constant time
budget of three seconds. The final configurations from Section 5.1 were
used and the results can bee seen on Figure 5.7
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Figure 5.7: The win percentages of the non-explorative MCTS and the online evolution with various
time budgets against GreedyTurn with a constant time budget of three seconds.

It is interesting to see that both algorithms are able to reach a win
percentage of around 75% with a time budget of just 94 ms., suggesting
that these methods could work well in real-time domains as well. The
online evolution did, however, only achieve a win percentage of 3.0%
with a time budget of 47 ms. possibly because it needs time to set up
populations on each thread. Given more time, not a lot of progression
is observed, while the online evolution achieved the best results, again.



5.3. Versus Human Players 65

5.3 Versus Human Players

One important and often overseen experiment is to test the implemented
agents against human players. We were able to test our best agent, the
online evolution agent, against 111 testers. This gives us knowledge
about the current state of the implemented algorithms, and whether
they are useful to implement in a real game product. One reason why
such experiments are often left out, may be because of the time consum-
ing task of finding test subjects and manually recording the results. To
overcome this challenge a web server running Node.js on the Heroku
cloud service was setup and connected to a MongoDB database1. The
Hero AIcademy engine was extended to handle such tests by sending
game results of each turn to the web server. Additionally, test subjects
were asked about their skill level by the program before they entered
the game, with options of being a beginner, intermediate or expert. If
players had never played the game before they were asked to choose
"beginner". Players that did choose "beginner" were supplied with an
additional screen briefly explaining the two winning conditions of the
game and how to undo actions during their turn. The program was
exported as a runnable JAR file and distributed on Facebook among
friends, colleagues and fellow students, on the Steam community page
for Hero Academy2 and on the Hero Academy subreddit page3.

After about a month the database contained 111 records with 61
beginners, 27 intermediates and 23 experts. All the results can be seen
in Appendix B. Among theses records, 55 holds data of games played
until a terminal state was reached, with 26 beginners, 13 intermediates
and 16 experts. In the remaining games, players simply left before it
was over. Figure 5.8 shows the heuristic value, found by the HeuristicE-
valuation, when they left the game, where 1 equals a win and 0 equals a
loss, and the turn in which they left.

It is reasonable to think that some players left early because they
simply did not want to play the game when they saw it, while others
might leave because they thought it was too easy or too difficult. Results
outside of the score range between -0.1 and 0.1 were treated as either a

1https://github.com/njustesen/heroai-testserver
2http://steamcommunity.com/app/209270/discussions/
3http://www.reddit.com/r/HeroAcademy/



66 Chapter 5. Experimental Results

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100

s
c
o

re

turns

Beginners
Intermediates

Experts

Figure 5.8: The turn in which players left the game and their score at that time. The score was calculated
by the HeuristicEvaluation of the game state, where 1 equals a win and 0 equals a loss. Results
outside the two grey lines are treated as a win or a loss.

win or a loss. The results for beginners, intermediates and expert players
are shown on Figure 5.9, where the blue bars show results for all players
outside the heuristic range between -0.1 and 0.1 while the red bars show
the results of completed games only. The results show that our agent
is able to challenge beginners, while it is easily beaten by intermediate
and expert players.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

beginner intermediate expert

h
u

m
a

n
 w

in
 p

e
rc

e
n

ta
g

e

human skill level

completed
all

Figure 5.9: The results of human players against the online evolution agent. Error bars show the stan-
dard deviation. The red bars only show results from completed games while the blue bars also include
games where players quit while being in front or behind by 10% (calculated by the HeuristicEval-
uation).
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The online evolution agent were using the island parallelization
method to reach the best performance possible. One concern when
looking at the final results was, that the number of processor cores
on the testers PCs, might be the main reason why players lost and
this obscured the results. In fact it did turn out that players with 4
cores won 82% of the games, while players with 8 cores only won 67%.
This indicates that the winning rate is correlated with the number of
processor cores used. Beginners in the experiments used an average
of 6.69 cores, while intermediate players used 4.00 and expert players
used 4.75. Among the winning beginners an average of 7.38 cores were
used, and among the losing beginners an average of 6.00 were used,
which contradicts the correlation. The correlation between the human
skill level and win percentage is, however, much more evident. Still, the
experiment should have been made such that the online evolution agent
would use the same number of processor cores in each experiment.

Some of the testers also gave some written feedback. A few examples
are shown hereunder.

“I was beaten."

“I also lost."

These two comments indicate that some players lost their first game
and did not bother to try again.

“I lost the first time but I had no idea what I was doing..
Second time I beat it!"

A few players expressed that it was difficult in the first game but
were then able to win the second.

“The AI can’t use the upgrades properly. It wastes the fire
spell."

This comment indicates that some of the constants used by the
heuristic might be suboptimal.

“It’s far from beating an average player, however I think
it’s a good piece of work."
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The last comment is from the Steam community page for Hero
Academy and conforms with the results on Figure 5.9, that the AI agent
is on level with beginners while intermediate, or average, players are
able to beat it. Still, the comment indicates that intelligent behavior is
observed by saying it is a good piece of work.



Chapter 6

Conclusions

This section sums up the results of this thesis. Several algorithms have
been presented that are able to play Hero Academy and even challenge
human beginners. We have thus been able to answer our research ques-
tion partly, while several challenges have been identified, that must be
solved to reach a higher playing level. This conclusion can also be
seen as our advice to others that want to implement an agent for Hero
Academy or similar TTB games.

Research question
How can we design an AI agent that is able to challenge
human players in Hero Academy?

A greedy search was implemented, that was barely able to beat our
baseline agent, despite its use of action sorting, pruning and paralleliza-
tion. The vanilla MCTS performed even worse than our baseline, while
we observed that rollouts with a depth-limit of just one turn followed by
a static evaluation function works best. A non-explorative variant that
uses deterministic greedy rollouts and an exploration constant Cp = 0
outperformed the vanilla MCTS with a 95% win percentage. Two novel
progressive pruning strategies were also introduced based on cutting
and collapsing the MCTS search tree. The cutting strategy outperformed
the vanilla MCTS with a 97% win percentage, while the collapsing strat-
egy showed no improvement. The non-explorative MCTS was shown
to be the best of the variants in head to head match-ups. Transposi-
tion tables, action sorting, action pruning and ε-greedy rollouts were
used to enhance the performance of the MCTS agents. A parallel online
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evolutionary algorithm was implemented that evolves plans each turn
and uses a fitness function based on depth-limited rollouts. The mini-
mum value found by the fitness function is used and stored in a history
table. This agent reached the best overall performance of all the imple-
mented agents. Uniform crossover was applied that, using an if-allowed
rule only accepts legal action sequences. The idea of using rollouts in
combination with online evolution only showed a small improvement,
while it is a unique approach that, to our knowledge, has not been done
before. It seems that two areas are important when creating an agent
in Hero Academy. The first area is concerned with searching for plans,
while the second area is concerned with game state evaluation. The
online evolution agent was able to challenge human beginners, while
intermediate and expert players easily beat it. As we have highlighted
several methods that are able to search for actions adequate, we believe
the greatest challenge now is to produce strong game state evaluators.
Preliminary attempts were also made to evolve a game state evaluator
using NEAT. A network was evolved, that was able to reach a win per-
centage of 77.66% against our baseline agent on a small game board,
while a win percentage of 48.0% was achieved on the standard sized
game board. The networks had 13 input neurons for each square on the
game board. This suggests that other solutions should be investigated
with simple input layers.

6.1 Discussion

The online evolution worked very well in Hero Academy, and it is prob-
ably also very effective in other multi-action games with more than five
sequential actions such as Blood Bowl, where players can move up to 11
units each turn.

The use of rollouts as a heuristic was quite disappointing. The re-
lated work presented in this thesis and our own results suggests, that
depth-limited rollouts are necessary in games with large branching fac-
tors and complex rules. The improvement of using rollouts in the online
evolution was not significant, while we still think it is a very interesting
approach, as it allows the evolution to take the opponents actions into
account.

It was expected that MCTS would have a hard time overcoming the
large branching factor of Hero Academy and that radical enhancements
were needed. The cutting and non-explorative approaches rigorously
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and naively ignore most of the game tree, which of course has its down-
sides, but enables the search to explore the opponent counter-moves
very well. The collapse approach did, in contrast to our expectations,
not improve the performance. Our best guess is that the remaining
nodes after the collapse are too uncertain, since MCTS is not able to ex-
plore the first five plies very well. Also, the K parameter might be set
too high, so that collapses almost never happen. An investigation of this
should be performed, but was not possible based on the output of our
experiments.

Several of our algorithms used some form of transposition table,
which performance is depended on the game state hash function.
Proper tests should be performed to test the collision probability of this
function. We do, however, not believe that this was a problem in our
implementations for two reasons. First, the MCTS search trees have
been saved into XML files, where after they were manually studied and
the edge connections looked correct. Second, MCTS would most likely
run into an infinite loop if collisions were common, as a cycle could be
produced in the tree leading to a stack overflow error. This was not
observed.

The implemented agents were compared by playing the game against
each other. It is important to note that each agent has its own strategy as
a result of their different implementations. E.g. the GreedyTurn agent
plays very aggressive and can take out human players very fast, by a
crystal kill, if the opponent is unwary. It is, however, very easy to beat
it, as it is way too aggressive and thus careless with its units. We believe
this agent is able to beat some human beginners as well. It would have
been optimal if we tested every agent against human players, but it
would also require a lot more testers.

If we were to reproduce the experiments with human players, we
would definitely give the agents the same number of processors in every
test, as not doing so obscured some of the results.

One could argue that our agent only won against human beginners,
because most of them did not know the rules. A few rules and the two
winning conditions were presented to the beginners before the game
began, so we do not believe, they were unaware of what was going on.
Still, the beginner category of course includes players that only know
some of the rules. We believe the online evolution agent could easily be
used, as it is, in the actual game. It could serve as a training opponent
for new players and is fast enough to work on mobile devices. It could



72 Chapter 6. Conclusions

also help the developers with procedural content generation, such as
generation of game boards and challenges.

Our NEAT approach seems to have more trouble when applied to
the standard sized game board in Hero Academy. It might be a bit
naive that it would actually work, since so many squares create an enor-
mous amount of dependencies, that probably requires a network with
thousands of neurons. A higher level might have been reached if the
evolution was run for more generations, but it may require weeks of
computation or a super computer with more than 16 cores. New ap-
proaches are probably needed to reach a very solid playing level, and
some ideas are presented when ideas for future work are presented next.

6.2 Future Work

This section offers a list of future work directions representing some of
the questions that remain unanswered in this thesis. It is made as a list
of points that can inspire future projects.

1. Further understanding of the non-explorative MCTS is needed.
Will it work better if the exploration constant is very small instead
of zero? Can tree parallelization improve its performance further?
In what other games could it be a useful approach?

2. Two progressive strategies were introduced in this thesis, where
the cutting strategy proved to be effective. Can we design other
progressive strategies to overcome large branching factors? Can
the cutting and collapsing strategies be improved? How does the
cutting strategy work compared to existing progressive strategies
such as progressive unprunning/widening?

3. MCTS was only tested in the deterministic version of Hero
Academy since no determinization method was implemented.
One approach could simply be to assume that players in future
game positions have all possible cards on their hand. This can vio-
late the rules of the game, as it could result in more than six cards
on a hand, but this should not be a problem in Hero AIcademy.
Another approach would simply be to select the most probable
cards for each players and use this fixed sample. It would be in-
terested to see how these determinization methods would work in
the stochastic version of the game.
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4. Online evolution using rollouts as a fitness function with a his-
tory table was introduced in this thesis. The enhancement of using
rollouts was however not significant. The idea still seems inter-
esting and exploring other methods combining evolution and roll-
outs should be interesting. Few attempts were also made on using
cascading fitness functions, but no useful results were achieved. It
would be ideal to have an algorithm similar to minimax, but where
moves for each players are evolved. If this vision is even possible
it definitely requires a lot of ingenuity.

5. Applying a genetic algorithm to optimize the parameters used in
the HeuristicEvaluation seems like an obvious way of improving
our results. It would probably solve the issues, also pointed out by
one of the testers, that the agents cannot use upgrades and spells
properly. To be able to improve the positional evaluation as well
the HeuristicEvaluation must be extended to also take such factors
into account. This might actually be the most promising direction,
to reach a higher playing level fast.

6. Potential fields and influence maps are well known methods in
game AI but have not been used in this thesis. Since positional
evaluation seems to be a very difficult task in Hero Academy, these
methods might help and should be explored further.

7. While the online evolution agent only achieved a playing level
compared to human beginners, the same approach might work
even better in other TTB games. Testing this approach in a game
such as the previously mentioned Blood Bowl would be very in-
teresting.

8. Continuation of our experiments with NEAT to find the limit of
our approach is interesting. Networks reaching an ε-level of 1
could probably be further evolved by tournament selection. A
game board of 9x5 squares may be too complex, and new ap-
proaches to evolve evaluators for large maps and complex game
states are very much needed. Perhaps each unit on the map can be
evaluated individually with simpler networks? Or maybe Hyper-
NEAT can be successfully used somehow.
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Appendix A

JNEAT Parameters

Parameter Value
trait_param_mut_prob 0.5
trait_mutation_power 1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weigh_mut_power 2.5
recur_prob 0
disjoint_coeff 1.0
excess_coeff 1.0
mutdiff_coeff 0.4
compat_thresh 3.0
age_significance 1.0
survival_thresh 0.20
mutate_only_prob 0.25
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.1
mutate_node_trait_prob 0.1
mutate_link_weights_prob 0.9
mutate_toggle_enable_prob 0
mutate_gene_reenable_prob 0
mutate_add_node_prob 0.06
mutate_add_link_prob 0.1
interspecies_mate_rate 0.02
mate_multipoint_prob 0.6
mate_multipoint_avg_prob 0.4
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mate_singlepoint_prob 0
mate_only_prob 0.2
recur_only_prob 0
pop_size 100
dropoff_age 15
newlink_tries 20
print_every 5
babies_stolen 0
num_runs 1
p_num_trait_params 20
p_age_significance 1.1
p_survival_thresh 0.9
p_compat_threshold 0.2
Table A.1: JNEAT parameters used in the experiments.
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Human Test Results

Map AI Time Lvl Win Turns Cores Heuristic Date
a OE 6000 1 1 55 8 60000 2015-04-02T02:40
a OE 6000 1 1 40 8 60000 2015-04-02T02:58
a OE 6000 1 0 8 0 2015-04-02T03:08
a OE 6000 1 1 52 8 60000 2015-04-02T04:30
a OE 6000 1 0 8 0 2015-04-02T04:43
a OE 6000 1 2 50 4 -60000 2015-04-02T06:17
a OE 6000 1 1 31 8 60000 2015-04-02T06:17
a OE 6000 1 0 8 0 2015-04-02T06:26
a OE 6000 3 1 52 8 60000 2015-04-02T06:27
a OE 6000 3 1 15 4 60000 2015-04-02T07:10
a OE 6000 3 1 42 4 60000 2015-04-02T07:16
a OE 6000 3 20 4 6058 2015-04-02T09:42
a OE 6000 3 0 4 0 2015-04-02T09:55
a OE 6000 2 0 4 0 2015-04-02T12:26
a OE 6000 2 0 4 0 2015-04-02T12:36
a OE 6000 1 0 4 0 2015-04-02T12:36
a OE 6000 3 0 4 0 2015-04-02T12:37
a OE 6000 2 2 24 4 -60000 2015-04-02T12:37
a OE 6000 2 1 23 4 60000 2015-04-02T13:19
a OE 6000 3 1 50 4 60000 2015-04-02T13:21
a OE 6000 2 4 4 945 2015-04-02T15:00
a OE 6000 1 1 49 8 60000 2015-04-02T15:09
a OE 6000 1 8 4 -3005 2015-04-02T16:00
a OE 6000 2 1 31 4 60000 2015-04-02T16:42
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a OE 6000 3 1 39 4 60000 2015-04-02T18:28
a OE 6000 1 2 34 8 -60000 2015-04-03T01:22
a OE 6000 1 1 49 8 60000 2015-04-03T01:32
a OE 6000 1 0 8 0 2015-04-03T01:44
a OE 6000 1 1 43 8 60000 2015-04-03T04:27
a OE 6000 1 2 56 8 -60000 2015-04-03T05:27
a OE 6000 1 0 8 0 2015-04-03T05:40
a OE 6000 3 1 49 4 60000 2015-04-03T08:10
a OE 6000 1 2 34 8 -60000 2015-04-03T08:46
a OE 6000 1 0 8 0 2015-04-03T09:01
a OE 6000 3 1 40 4 60000 2015-04-03T09:07
a OE 6000 3 1 36 4 60000 2015-04-03T09:22
a OE 6000 3 1 40 4 60000 2015-04-03T14:05
a OE 6000 3 1 44 4 60000 2015-04-03T14:30
a OE 6000 3 1 41 4 60000 2015-04-04T06:35
a OE 6000 3 1 29 4 60000 2015-04-04T06:48
a OE 6000 3 14 4 -3662 2015-04-04T06:57
a OE 6000 3 26 4 1853 2015-04-04T07:05
a OE 6000 3 1 21 4 60000 2015-04-04T15:52
a OE 6000 3 1 42 4 60000 2015-04-04T16:00
a OE 6000 3 24 4 5770 2015-04-04T16:15
a OE 6000 1 4 8 520 2015-04-04T19:50
a OE 6000 1 0 8 0 2015-04-04T19:50
a OE 6000 1 1 32 8 60000 2015-04-04T23:06
a OE 6000 1 0 8 0 2015-04-04T23:13
a OE 6000 1 2 8 2175 2015-04-07T14:25
a OE 6000 3 30 8 15820 2015-04-10T16:39
a OE 6000 2 0 4 0 2015-04-11T13:50
a OE 6000 2 1 27 4 60000 2015-04-11T13:51
a OE 6000 2 4 8 -750 2015-04-11T23:24
a OE 6000 1 12 4 -7343 2015-04-12T09:25
a OE 6000 1 2 57 4 -60000 2015-04-12T09:44
a OE 6000 1 1 62 4 60000 2015-04-12T10:33
a OE 6000 1 0 4 0 2015-04-12T11:28
a OE 6000 2 8 4 -1137 2015-04-12T12:04
a OE 6000 2 1 87 4 60000 2015-04-12T12:10
a OE 6000 2 0 4 0 2015-04-12T12:50
a OE 6000 1 1 36 8 60000 2015-04-13T00:11
a OE 6000 1 0 8 0 2015-04-13T00:25
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a OE 6000 3 1 46 8 60000 2015-04-13T00:25
a OE 6000 1 1 48 8 60000 2015-04-13T18:41
a OE 6000 1 2 8 0 2015-04-14T10:00
a OE 6000 2 1 53 4 60000 2015-04-16T20:37
a OE 6000 1 2 34 4 -60000 2015-04-18T15:58
a OE 6000 1 2 38 4 -60000 2015-04-18T16:09
a OE 6000 1 6 4 -640 2015-04-18T20:18
a OE 6000 2 0 2 0 2015-04-18T22:45
a OE 6000 2 6 2 1715 2015-04-18T22:46
a OE 6000 2 0 2 0 2015-04-19T23:16
a OE 6000 3 1 40 8 60000 2015-04-20T00:27
a OE 6000 1 2 46 2 -60000 2015-04-01T10:27
a OE 6000 1 4 8 1375 2015-04-01T11:32
a OE 6000 1 0 4 0 2015-04-01T12:35
a OE 6000 1 16 2 -5027 2015-04-01T12:39
a OE 6000 2 1 42 4 60000 2015-04-01T12:45
a OE 6000 1 2 8 1970 2015-04-01T12:50
a OE 6000 1 2 32 8 -60000 2015-04-01T12:52
a OE 6000 1 2 42 4 -60000 2015-04-01T12:58
a OE 6000 2 4 4 -410 2015-04-01T13:03
a OE 6000 1 2 39 8 -60000 2015-04-01T13:08
a OE 6000 1 2 8 0 2015-04-01T13:10
a OE 6000 2 1 48 4 60000 2015-04-01T13:28
a OE 6000 2 1 41 4 60000 2015-04-01T13:48
a OE 6000 1 16 8 -7900 2015-04-01T14:03
a OE 6000 1 2 40 8 -60000 2015-04-01T14:45
a OE 6000 1 50 8 -750 2015-04-01T14:48
a OE 6000 1 1 44 4 60000 2015-04-01T14:49
a OE 6000 1 0 4 0 2015-04-01T15:14
a OE 6000 1 8 8 -1005 2015-04-01T15:19
a OE 6000 1 2 26 8 -60000 2015-04-01T15:30
a OE 6000 1 2 8 1925 2015-04-01T15:43
a OE 6000 1 10 4 -4280 2015-04-01T16:17
a OE 6000 1 20 4 -20205 2015-04-01T17:34
a OE 6000 2 0 8 0 2015-04-01T18:42
a OE 6000 2 1 49 4 60000 2015-04-01T18:45
a OE 6000 2 1 35 4 60000 2015-04-01T19:06
a OE 6000 1 12 4 -15795 2015-04-01T19:12
a OE 6000 1 12 4 -1110 2015-04-01T19:16
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a OE 6000 2 1 40 4 60000 2015-04-01T19:21
a OE 6000 2 1 23 4 60000 2015-04-01T19:21
a OE 6000 2 0 4 0 2015-04-01T19:29
a OE 6000 2 16 6 3390 2015-04-01T19:34
a OE 6000 1 8 8 -5300 2015-04-01T20:43
a OE 6000 1 18 4 1185 2015-04-01T22:11
a OE 6000 1 1 23 8 60000 2015-04-02T00:59
a OE 6000 1 0 8 0 2015-04-02T01:05
a OE 6000 1 18 8 -21393 2015-04-02T02:35

Human test results against the online evolution agent.


