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ABSTRACT
�e real-time strategy game StarCra� has become an important

benchmark for AI research as it poses a complex environment with

numerous challenges. An important strategic aspect in this game

is to decide what buildings and units to produce. StarCra� bots

playing in AI competitions today are only able to switch between

prede�ned strategies, which makes it hard to adapt to new situ-

ations. �is paper introduces an evolutionary-based method to

overcome this challenge, called Continual Online Evolutionary Plan-
ning (COEP), which is able to perform in-game adaptive build-order

planning. COEP was added to an open source StarCra� bot called

UAlbertaBot and is able to outperform the built-in bots in the game

as well as being competitive against a number of scripted opening

strategies. �e COEP augmented bot can change its build order

dynamically and quickly adapt to the opponent’s strategy.
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1 INTRODUCTION
�is paper describes how an evolutionary-based approach, called

Continual Online Evolutionary Planning (COEP), can control the

macro-management tasks in StarCra�. Evolutionary algorithms

have previously been applied to the problem of optimizing build

orders [1, 15, 16], but only to the extent of optimizing �xed opening

build orders, while COEP runs continually during the game (i.e.

online) to adapt to the opponent. A StarCra� bot can be adaptive

in two ways: It can be inter-game adaptive if it can change strat-

egy between games to counter the playing style of the opponent
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Figure 1: Continual Online Evolutionary Planning (COEP)
continually evolves future build orders while a StarCra� bot
(UAlbertaBot) executes the best one found so far.

and intra-game adaptive if it can adapt to the opponent’s strategy

within a game. Ontanón et al. conclude that ”No bot is capable of

observing the opponent and autonomously synthesize a good plan

from scratch to counter the opponent strategy” [21] and as we see

it both inter-game and intra-game adaptiveness have received li�le

a�ention in the research community.

�is paper focuses on intra-game adaptiveness as, to our knowl-

edge, no prior system exists that can perform in-game adaptive

build-order planning for StarCra�. Our approach is unique as COEP

runs continually to optimize the future build order while the game

is being played, taking available information about the opponent’s

strategy into account. For the experiments in this paper we build

on the modular UAlbertaBot, by replacing the module that is re-

sponsible for macro-management tasks (i.e. what builds to produce

and in which order) with our evolutionary planner. Tasks such as

controlling units in combat are performed by the UAlbertaBot itself

and are in themselves an activate research area [8, 14, 26]. A series

of experiments demonstrate that COEP can outperform the game’s

built-in bot as well as some scripted opening build-orders.

2 BACKGROUND
2.1 StarCra�
StarCra� is a real-time strategy (RTS) game released by Blizzard

Entertainment in 1998. Its expansion set StarCra�: Brood War was

released later the same year and became extremely popular as an

e-sport. �e sequel StarCra� II was released in 2010 with the same

core gameplay but has a more modern interface as well as several

new units and maps. �is paper focuses on StarCra�: Brood War

as it has gained the most popularity within the �eld of game AI,

while the presented approach can be applied to all the games in the

StarCra� series as well as similar RTS games.
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Players control one of three races in StarCra�, Terran, Protoss

and Zerg, each with their own strengths and weaknesses. Each

player starts with four workers that can gather resources and con-

struct buildings, as well as a base that can produce new workers.

As the game progresses each player produces more advanced units,

buildings, technologies, and upgrades (jointly referred to as builds)
until one player is able to overrun the opponent’s base. Advanced

builds require that some basic builds are produced �rst and these

requirements form a tree structure called a tech tree. A major part

of a player’s strategy is the order of builds produced, i.e. the build
order, which determines the number and combination of units the

player will have during the game.

StarCra� provides incomplete information about the game state,

since the opponent’s base is initially hidden and must be explored

by scouting units. �is, combined with the fact that multiple agents

must be controlled in real-time, makes it a challenging environ-

ment for decision making agents. �e decision-making process

can be split into micro-management and macro-management tasks.

We de�ne micro-management as the tactical control of individ-
ual units and buildings, and macro-management as the strategic
planning of what builds to produce and in which order. �e approach

introduced here only focuses on the macro-management tasks.

2.2 StarCra� Bots
�e game has become an important benchmark in the �eld of game

AI with several competitions such as the AIIDE StarCra� AI Com-
petition1

, the CIG StarCra� RTS AI Competition2
and the Student

StarCra� AI Competition3
. Many challenges must be overcome to

succeed in these competitions, such as terrain analysis, path�nding,

and build order scheduling. However, as noted by Ontanón et al. in

2012, the most successful StarCra� bots rely mainly on hard-coded

strategies [21], which is still the case today [9]. Many of these bots

implement hard-coded build orders and are only able to adapt by

following some prede�ned rules. �e problem with hard-coded

approaches is that the bot is limited to a �xed set of strategies, but

more importantly the ability to adapt to what happens in the game

is restricted as well. While a hard-coded approach can be successful

against many other bots, it is easy for human players to counter

these strategies.

Most StarCra� bots have a modular design, in which the tasks

are divided into smaller sub-problems (i.e. a divide and conquer
strategy). �ese modules o�en form hierarchy of abstraction that

enables the top-level modules to perform macro-management tasks

while lower level modules perform micro-management. �e open

source UAlbertaBot
4

by Churchill is an example of such an approach.

�e strategy manager maintains the strategy and communicates to

the production manager what build order to follow. �e production

manager then takes care of assigning workers and buildings to

produce the next builds in the queue, which happens simultaneously

while the combat manager controls units in ba�le and the scout

manager controls any scouting units. A strategy for UAlbertaBot

can be described in a con�guration �le as a scripted build order;

1
h�p://www.cs.mun.ca/∼dchurchill/starcra�aicomp/

2
h�p://cilab.sejong.ac.kr/sc competition/

3
h�p://sscaitournament.com/

4
h�ps://github.com/davechurchill/ualbertabot

a hard-coded strategy followed by the bot. �e modular design is

described in more detail in Ontanón et al. [21].

StarCra� bots communicate with the game using the Brood War

Application Programming Interface (BWAPI)
5
. BWAPI allows other

C++ programs to access the game state in StarCra�: Brood War as

well as giving commands to units, and is used by all the bots in the

aforementioned competitions.

2.3 Build-Order Planning
�ere exist several approaches to build-order search and optimiza-

tion for StarCra�. Churchill et al. implemented a depth-�rst branch

& bound algorithm that �nds the shortest possible time span to

achieve a given goal (i.e. a list of units the build order should obtain

[7]). �e problem of optimizing opening build-orders has also been

approached with multi-objective evolutionary algorithms [1, 15, 16]

by encoding the genotype as a the list of builds. �e strength of

these methods is that they do not evolve build orders to reach one

goal, but several. While these approaches to build-order optimiza-

tion work well, even when compared to professional players, they

are only designed to �nd an opening build-order and do not take the

opponent’s strategy into account as the game progresses. Synnaeve

et al. show promising results for adaptive build-order planning;

their approach can predict the opponent’s strategy from the noisy

observations in the game using a Bayesian model [25]. However

their approach relies on hard-coded rules on top of the prediction

model and it is unknown how well it will work when integrated

into a bot. Another approach worth mentioning by Garćıa-Sánchez

et al. [11] demonstrates how a complete strategy can be evolved,

including both macro-management and micro-management behav-

iors. �e evolved strategies are however static and do not change

during a game. Some a�empts have been made to predict the oppo-

nent’s strategy from partial information [6, 25], but it has not been

demonstrated how these approaches can be applied to build-order

planning.

2.4 Online Evolutionary Planning
Evolutionary algorithms (EA) are a popular class of optimization

techniques inspired by natural selection [12] that have been used

for agents in various types of games. Online Evolutionary Planning

(OEP) is a speci�c type of EA that can be applied to environments

where an agent takes a number of actions sequentially. �e algo-

rithm’s genotypes represent a sequence of actions and to evaluate

the �tness of such a sequence (i.e. a plan), a forward model predicts

the outcome of applying that plan in the current game state. A

forward model can simulate the environment by implementing

its rules or some abstraction of it. A heuristic then evaluates the

resulting game state similarly to many tree search approaches.

Evolving behaviors for decision making agents using EAs has

been a popular approach, for example for parameter-tuning of

game-playing bots in FPS games [10]. Evolving neural controllers

(i.e. neuroevolution) has also been applied in various contexts in

games [23], including the racing competition TORCS [3, 4]. Usually

EAs are applied in an o�-line manner in which a behavior is evolved

in a long series of training games. Recent work has however shown

that EAs can also be successful for planning action sequences in an

5
h�p://bwapi.github.io/

http://www.cs.mun.ca/~dchurchill/starcraftaicomp/
http://cilab.sejong.ac.kr/sc_competition/
http://sscaitournament.com/
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on-line manner. On-line evolutionary algorithms for decision mak-

ing and planning, also called Online Evolution, Online Evolutionary
Planning or Rolling Horizon Evolution, have been applied to the

traveling salesman problem [22], two-player real-time games [17],

the turn-based strategy game Hero Academy [13] and StarCra�

combat situations [26]. �e Online (1+1)-Evolutionary Algorithm

has also been applied to evolve controller values online for a robot

during the actual operation [2] and for a controller in a car racing

game [20]. �is algorithm di�ers from Online Evolutionary Plan-

ning as they evolve actuator values instead of action sequences.

Tree search methods have limited success in such environments as

the search tree needs to reach a certain depth to properly evaluate

an action sequence (e.g. to properly evaluate a build order of 12

builds, the search tree must reach a depth of 12). One tree search

method worth mentioning is Monte-Carlo Tree Search (MCTS) [5],

which is based on random sampling and has been applied to games

with large search spaces such as Go [24].

While OEP in itself is simple, depending on the environment

it can be applied in various ways. Perez et al. applied the OEP

variant Rolling Horizon Evolution to a real-time environment by

evolving a series of short-term plans one by one [22] in a “rolling”

fashion; while the current plan is being executed the proceeding

plan is being evolved in parallel. �is approach can react to changes

within a real-time game, but only once the agent begins the next

plan. �e downside of this approach is that it must either evolve

short plans or adapt slowly. �e continual approach presented here

always evolves plans from the current game state, which allows for

faster adaptation, while still performing long-term planning.

3 APPROACH: CONTINUAL ONLINE
EVOLUTIONARY PLANNING

Continual Online Evolutionary Planning (COEP) extends the original

Online Evolution approach by Justesen et al. [13]. Each genome

represents a candidate build order with a �xed length. To evalu-

ate the �tness of genomes a build order forward model simulates

the outcome of a build order (Section 3.1). �e �tness function

(Section 3.2) takes into account the resulting unit composition and

available information about the opponent’s units.

�e most prominent di�erence to the original Online Evolution

approach is that COEP runs continually in parallel. Additionally,

when the bot requests a new build, it is taken from the build order

of the currently most �t candidate (the champion) in the population.

Simultaneously, the game state (state in Algorithm 1) is updated

such that build orders are generated and evaluated based on a recent

version of the game state. Furthermore, if builds have gone into

production since the last update, genomes are updated such that

the �rst instance of these builds are removed from their build order.

COEP runs a �xed number of generations a�er which it restarts

using a new population. �ese restarts are intended to prevent the

evolution ge�ing stuck in local optima, which would prevent the

system from adapting to the continuously changing game state.

To avoid too much variance when new populations are created,

the champion of the last population is transferred into the new

population but excluded from the reproduction phase. In this way,

COEP can a�empt to evolve new build orders while keeping the

best from the last population until a superior solution is found.

Algorithm 1 Continual Online Evolutionary Planning (COEP)

1: COEP continually creates a new population and runs evolution

for number of generations. State is updated by the bot as soon

as new information is obtained and the best found build order

can be retrieved from the champion genome.

2: procedure COEP(GameState s) . s is the initial game state.

3: champion = NULL . Accessible by bot

4: state = s . Accessible by bot

5: while game is not over do
6: pop = ∅ . Create new population

7: if champion is not NULL then pop.Push(champion)

8: for i = Size(pop) to POP SIZE do
9: д = Genome(s)

10: д.buildOrder = legal build order from s
11: д.�tness = Fitness(s , дenome .buildOrder)

12: pop.Push(дenome)

13: for i = 1 to GENERATIONS do
14: Reduce pop based on elitism rules

15: Reproduce o�spring using crossover

16: Mutate some o�spring

17: Evaluate �tness of o�spring

18: Add o�spring to pop
19: champion = most �t genome

Figure 2: Two-point crossover for two parent build orders
and the resulting o�spring. Notice that the build in the bot-
tom right corner remains in the genotype but becomes inac-
tive because its requirements are no longer met.

�is idea is similar to case-injected genetic algorithms, in which

solutions to previously solved problems are periodically injected

into the population [18, 19].

Crossover is applied directly to build orders from two randomly

sampled parents (Figure 2). Computational resources on the for-

ward model are limited by checking legality only when genomes

are generated for a new population, and not a�er crossover and

mutation. �us, it is important to trim illegal builds when the bot

request a build order. If some builds within a build order of an

o�spring are illegal, the forward model simply ignores them.

Four di�erent mutation operators make sure that existing build

orders can be reorganized e�ectively and new genes with several

requirements can be introduced (Figure 3): Clone: Two indices

a and b are randomly selected. Build at position a becomes the

same as the build at position b. Swap: Two random builds swap

position. Add: One random build is randomly inserted. For each
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Figure 3: A build order with ten builds, which is manipu-
lated by the fourmutation operators. Builds are highlighted
(red) if they are changed during an operation. (a) Shows the
initial build order, (b) the result of a clonemutation from in-
dex 5 to 8, (c) a swapmutation on index 1 and 3, which swaps
the two builds, (d) an add mutation on index 7, which adds a
dragoon and recursively adds its requirements �rst and (e) a
remove mutation at index 2 that moves the build to the end
of the build order.

unmet requirement, each required build is recursively added in

front, such that the �rst build is moved backwards and eventually

out of the build order. Remove: One random build is moved to the

end of the build order and all builds a�er the moved build’s initial

position slide one step forward.

3.1 Forward Model
A forward model can predict the outcome of taking some actions in a

given game state, which is necessary to evaluate the �tness of build

orders. In this paper, the model does not need to implement all the

game rules since we are only concerned with macro-management

and not how units move around the map. Such a build order forward
model was implemented for the Protoss and Terran race and the

source code is available
6
. �e forward model (Algorithm 2) iterates

the given build order and tries to add each build to the given game

state in order; if the requirements of a build are not satis�ed it is

simply ignored.

A few constants are used by the forward model: MINE SPEED

and GAS SPEED refers to the amount of minerals/gas one worker

gathers on average in one frame and has been estimated to 0.05

and 0.07 respectively (similar values of 0.045 and 0.07 were used by

Churchill et al. [7]). �e amount of minerals gathered decreases if

more than ten workers mine at each base, such that workers 11–20

only gather half as many minerals, 21–30 a third, etc.

COEP receives information available about the current game

state as input, which includes the number of all known friendly

and enemy units, buildings, technologies and upgrades as well

6
h�ps://github.com/njustesen/coep-starcra�/

Algorithm 2 StarCra� Build-Order Forward Model

MineralWorkers(s) and GasWorkers(s) return the number of

workers gathering minerals and gas, respectively, in s .

1: Predict(s , buildOrder , endFrame) returns the resulting game

state of producing the builds in buildOrder from state s until

frame endFrame is reached.

2: procedure Predict(GameState s , BuildType[] buildOrder , int

endFrame)

3: for each BuildType type in buildOrder do
4: nextFrame = ProduceFrame(s , type)

5: if nextFrame ≤ endFrame then
6: Progress(s , nextFrame)

7: Build(s , type)

8: else
9: Progress(s , endFrame)

10: return s .�e altered game state.

11: procedure ProduceFrame(GameState s , BuildType type)

12: Returns the latest frame in which all requirements, re-

sources, and production buildings/units are available in s in

order to produce type .

13: procedure Progress(GameState s , int toFrame)

14: t = toFrame - s .frame

15: s .minerals += t ×MINE SPEED ×MineralWorkers(s)
16: s .gas += t × GAS SPEED × GasWorkers(s)
17: for each Build b in s .underProduction do
18: if not b.done and toFrame ≥ b.doneAt then
19: Add one build of type b.type to s
20: b.done = true

21: procedure Build(GameState s , BuildType type)

22: b = Build()

23: b.type = type
24: b.doneAt = s .frame + type .buildTime

25: s .underProduction.Push(b)

26: s .minerals -= type .mineralCost

27: s .gas -= type .gasCost

28: s .supply += type .supplyCost

as the current frame number. �e technologies and upgrades the

opponent has researched are not known so they are excluded. Also

note that the game state only includes the partial knowledge about

the enemy units that the player has obtained. Additionally, the

game state includes a list of friendly builds that are in production

as well as the frame number in which they are completed.

3.2 Fitness
Building on the forward model, which predicts the resulting game

state a�er applying a build order, the �tness of a build order is

determined by how desirable this future game state is for the player.

A challenge with this naive approach is that, at least in real-time

games, the longer one tries to predict into the future the more

uncertain the outcome becomes. For example, a build order with a

very strong economy in the beginning and a large unit production

in the end would give a high �tness, even though the player has no

army and is defenseless during most of the evaluated period.
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Algorithm 3 Discounted Accumulated Fitness

1: Sets the �tness of a genome by calculating the discounted

accumulated �tness of several steps of stepSize frames for a

total of horizon frames.

2: procedure Fitness(Genome д, GameState s , int horizon, int

stepSize)

3: state = Clone(s)
4: step = 0

5: while state .frame < s .frame + horizon do
6: next = Min(s .frame + horizon, state .frame + stepSize)

7: build = next unbuilt build in д.buildOrder

8: state = Predict(state , [build], next )
9: д.�tness += Heuristic(state) ×DISCOUNT step

10: step += 1

Zealot Dragoon Dark Templar Scout

Marine 0.7 0.5 0.6 1.6

Firebat 1.3 0.1 0.8 0.7

Vulture 1.6 0.7 1.6 0.7

Goliath 0.9 0.7 0.9 1.5

Siege Tank 0.8 1.4 0.5 0.9

Table 1: Unit matchup table that values how strong units are
against each other which is a critical part of the heuristic
applied. Values are in the range [0, 2].

�erefore, the �tness function introduced in this paper performs

an evaluation several times during the time span of the build order in

addition to incorporating a discount factor (inspired by the Bellman

equation) that values short-term rewards higher than long-term

rewards. In other words, instead of applying the forward model one

time on the entire build order, it is applied in several steps on subsets:

within each step the heuristic of the intermediate game state is

accumulated into the �nal �tness of the build order (Algorithm 3).

�e �tness function is based on a heuristic that can evaluate how

desirable game states are. �e game state in StarCra� is seen from

a player perspective and is thus only partial visible (see Section 3.1).

Designing an optimal heuristic for StarCra� is extremely challeng-

ing and highly dependent on the applied micro-management policy.

�e simple heuristic in this paper evaluates players’ unit compo-

sition based on speci�c StarCra� domain knowledge. Some units

are superior against particular units while inferior against others

(e.g. the powerful Zerg ultralisk, a ground melee unit, is defenseless

against a Protoss scout, a �ying ranged unit). To express how strong

each unit type is against any other unit type a unit matchup table is

introduced (Table 1). For example, the Terran �rebat (short-ranged

unit) is valued 0.4 against a Protoss dragoon (long-ranged unit)

to express its weakness in this matchup. �e value of a dragoon

against a �rebat is the same, but inverted: 2 − 0.4 = 1.6. A�ributes

such as damage types, unit size and whether they are invisible or

can detect invisible units are also considered.

Upgrades and technologies can improve the strength of some

units, which is re�ected in Table 2. �e values in this table are

multiplied with the matchup value from Table 1 to determine the

�nal values. For example, a Protoss dragoon has a �nal value against

a Terran �rebat of 1.6 × 1.25 = 2, if the Singularity Charge upgrade

has been researched. Note that upgrade bonuses are not added to

Zealot Dragoon Scout

Ground Armor 1.02 1.02 -

Plasma Shields 1.02 1.02 1.02

Air Armor - - 1.02

Singularity Charge - 1.25 -

Table 2: Upgrade and tech multipliers, which give units ad-
ditional value in the heuristic.

enemy units. We de�ne a function matchup that performs these

calculations given a friendly unit type x and enemy unit type y (e.g.

matchup(dragoon, �rebat) = 1.6;matchup(�rebat, dragoon) = 0.4).

�e value for player p of a unit matchup of friendly units of type x
and enemy units of type y is:

value(p,x ,y) =matchup(x ,y) × n(x) × n(y) ×
(
1 − n(x)

N (p)

)
,

where matchup(p,x ,y) refers to the unit matchup table, n(y) and

n(x) is the number of units of type y and x , and N (p) is the number

of all units controlled by player p. �e idea is that a player should

strive to optimize all four components of this function to achieve

a good unit combination. �is heuristic prefers a balanced unit

composition, in which units individually have high unit matchup

values against the enemy units. �e �rst three components increase

if the player has many units that counter the enemy units while the

last component (1− n(x )
N (p) ) increases if the player has a balanced mix

of unit types. It should be noted that n(x) in the last component

is further divided by 2 if x is a worker. �e �nal heuristic for

calculating the discounted accumulated �tness of a given state S
(Algorithm 3) with players p1 and p2 is the sum of all values for all

permutations of both players’ units types up1 and up2:

heuristic(S) =
up1∑
x

up2∑
y

value(p1,x ,y) −value(p2,y,x).

A�er prior experimentation with this heuristic we found it neces-

sary to penalize expansions while having few workers as well as

not expanding while having many workers. �e expansion penalty

in state s is equal tonumO f Bases×14−MineralWorkers(s). Like-

wise, a penalty for having too many supply buildings was found

necessary. A complete implementation of the heuristic can be found

in the source code
7
.

3.3 Integration with UAlbertaBot
Because of UAlbertaBot’s modular design it is simple to replace

the existing production manager module with the presented COEP

approach; all other modules in the bot are kept unchanged. �e new

production manager now requests the COEP for a build whenever a

new build is being produced or if 600 frames have passed. Since our

implementation of COEP is in Python, the production manager im-

plements an HTTP client and communications with COEP through

an HTTP server using the Django framework. �is setup works

well for experimentation but with the downside that it cannot run

in BWAPI’s release mode and thus not as part of the current AI

competitions. �e entire setup is composed of UAlbertaBot running

in one process which communicates with another process that is

divided into two threads, one for Django and one for COEP.

7
h�ps://github.com/njustesen/coep-starcra�
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4 EXPERIMENTS
�is section is split into two parts, where the �rst part consists

of experiments that tests the ability of Online Evolutionary Plan-

ning (OEP), without the continual extension, to evolve strong build

orders for static game states in StarCra�. Without the continual

extension, the algorithm runs normally for a �xed number of gen-

erations using the same game state and then terminates. In the

second part, COEP is applied to UAlbertaBot and is then tested in

a total of 900 StarCra� games against the game’s built-in bot as

well as UAlbertaBot with four scripted opening build orders. �e

games were played on the two-player map Astral Balance and all

the game replays are made available
8
.

�e population size of the algorithm is set to 64 with a survival

rate of 25%. A two-point crossover operator is employed, and mu-

tation operators (clone, swap, add and remove) are each activated

individually with a 50% probability. �is combination of mutation

operators was found to perform best among the tested con�gura-

tions (see Figure 4). For the �tness function a step size of 2 minutes

(9,810 frames) is used, and a horizon of 8 minutes (11,429 frames),

resulting in genomes with a build order length of 57 builds (200

frames per build), and a discount factor of 0.9. It takes on average

156±18 ms. for the algorithm to run one generation on a regular

laptop (2,6 GHz Intel Core i5).

4.1 Online Evolutionary Planning Results
Online Evolutionary Planning (OEP) was tested on its ability to

evolve build orders to counter di�erent enemy unit combinations.

More speci�cally, OEP had to �nd e�ective build orders for a Pro-

toss player against a Terran player. Six di�erent scenarios were

created (Table 3) all with one nexus (main base), four probes (work-

ers) and one pylon (supply building) for the Protoss player, each

with a di�erent set of units for the Terran player. For each of the

six scenarios, OEP ran for 100 generations with a horizon of 12

minutes. Table 3 shows the unit combination of the best evolved

build orders averaged over 50 independent evolutionary runs. �e

results demonstrate that OEP is capable of evolving diverse unit

combinations that clearly depend on the combination of enemy

units. For example, in the scenario shown in row six, the algo-

rithm avoids zealots and dark templars (both ground melee units)

against wraiths and ba�lecruisers (both �ying units). In scenario 2

the algorithm prefers dragoons (long-ranged units) against �rebats

(short-ranged units). �e reason why zealots and dragoons are so

dominant in the evolved build orders is that they are cheaper units

that can be produced early in the game. Referencing the values

in the unit matchup table (Table 1) shows that the evolved build

orders produce matching unit combinations.

To determine the importance of the introduced mutation opera-

tors, we ran 50 independent evolutionary runs for 100 generations

with only one of the four mutation operators enabled, compared to

all of them enabled (Figure 4). Interestingly, the clone and swap op-

erators where the most e�cient, but signi�cantly less e�ective than

as all four operators together (p < .01; two-tailed Mann-Whitney

U Test). �e algorithm was also tested with uniform crossover,

single-point crossover and two-point crossover, but no signi�cant

change in performance was detected.

8
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Figure 4: �e average �tness over generations for Online
Evolutionary Planning using a di�erent mutation operator.
Opaque coloring shows standard deviations.

4.2 Continual Online Evolutionary Planning
Results

In the previous experiments, it was shown that OEP is capable of

evolving build orders to counter the opponent’s strategy. In the

following experiments COEP is applied to UAlbertaBot to perform

in-game build-order planning, playing as the Protoss race. COEP

uses the same con�guration as in the previous experiment as well

as 100 generations in each loop. �e bot played a total of 300

games against the built-in bots in StarCra�, 100 against each of the

three races. Our bot won 275 games (91.7%) with 5 games (1.7%)

ending in a draw. A summary of the results can be seen in Table

4. Each iteration of COEP, which consists of initializing a new

population and running 100 generations, takes on average 9.96±0.8

seconds. COEP was also tested with a random �tness function,

which performs signi�cantly worse, corroborating the heuristic

chosen in this paper. In most games the bot demonstrated the

ability to adapt to the opponent’s strategy e�ciently enough to

win. An example of such adaption is shown in Figure 5. �e upper

plot displays the number of zealots, dragoons, marines and �rebats

in the game. It is clear that our system (controlling the Protoss

units) prefers zealots against the enemy marines but switches to a

unit combination dominated by dragoons when �rebats are spo�ed.

�is adaption rule can be seen in Tables 3 and 1. �e bo�om plot

shows the highest �tness in the population over time as well as the

times the COEP’s game state was updated.

�e �nal experiment compared our adaptive approach with four

scripted protoss strategies played by UAlbertaBot. �is test is more

challenging as these scripts employ established opening strategies,

optimized to destroy the enemy early in the game. Zealot / dragoon

/ DT rushes are aggressive strategies, in which the player tries to

obtain an army of only one type of unit (zealots, dragoons or dark

templars) as fast as possible to surprise the opponent. Still COEP

was competitive against these challenging openings, winning 52%

of all games (draws counted as half a win). �e most challenging

for COEP were the very fast zealot rush, which did not give much

time to adapt. �ese results are summarized in Table 5.
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Terran units Average unit combinations of evolved build orders.

SCV Marine Firebat Vulture Goliath
Siege

Tank
Wraith

Ba�le-

cruiser

Zealot Dragoon

Dark

Templar
Reaver Scout Carrier

10 10 0 0 0 0 0 0 7.5 ± 2.8 8.2 ± 4.2 1.2 ± 2.0 2.3 ± 2.3 0.0 ± 0.0 0.1 ± 0.4

10 0 10 0 0 0 0 0 2.2 ± 2.0 11.8 ± 5.0 0.5 ± 0.9 2.3 ± 2.6 0.4 ± 0.7 0.3 ± 0.9

10 0 0 8 0 0 0 0 1.0 ± 1.0 7.5 ± 3.5 0.0 ± 0.1 1.6 ± 2.1 1.2 ± 1.5 1.4 ± 1.6

10 0 0 4 0 4 0 0 2.9 ± 1.9 3.5 ± 2.7 0.3 ± 0.1 2.6 ± 2.9 0.6 ± 1.1 1.4 ± 1.6

10 0 0 0 4 4 0 0 6.1 ± 3.0 2.8 ± 2.8 0.6 ± 1.8 3.2 ± 2.7 0.1 ± 0.4 0.6 ± 1.0

10 0 0 0 0 0 4 2 0.8 ± 1.0 9.7 ± 3.7 0.0 ± 0.3 1.6 ± 1.6 0.4 ± 0.7 0.6 ± 1.0

Table 3: Unit combinations of evolved build orders found by Online Evolutionary Planning a�er 100 generations. Results are
averaged over 50 evolutionary runs. Some units are excluded from the results for brevity. Each row represents one scenario
containing the Terran units on the le� as well as a Protoss nexus, pylon and four probes. �e Protoss units on the right are the
average unit combination of the evolved build orders. For each unit type, the average count as well as the standard deviation
is shown. �e main result is that by following the implemented heuristics, Online Evolutionary Planning is able to evolve
build orders that can e�ectively counter the opponent’s strategy.

Figure 5: A visualization of Continual Online Evolutionary Planning’s (COEP) ability to adapt a Protoss build order in-game
against the built-in Terran bot. �e upper plot shows the number of zealots, dragoons, marines and �rebats over time and the
lower plot shows the highest �tness in the population. Green vertical lines indicate when the game state was updated. �e
four screenshots in the top show critical situations in the game. Early in the game the bot observes a group of Terran marines
and continues to produce zealots to counter them. Shortly a�er, these zealots �ght against a large group of Terran �rebats and
many zealots die. COEP quickly adapts its strategy to switch production to dragoons as they are superior to �rebats. A video
of this game can be found here: https://youtu.be/SCZbDpIaqmI.
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Protoss Terran Zerg

COEP 83/4/13 96/0/4 96/1/3

COEP Random Fitness 1/0/99 0/0/100 4/0/96

Table 4: Number of wins, draws and losses by Continual On-
line Evolutionary Planning (COEP) against each of the three
races controlled by the built-in bot in StarCra�. �e bottom
row shows results of COEP with a random �tness function.

Zealot Rush Dragoon Rush DT Rush

COEP 19/0/81 60/0/40 73/7/20

Table 5: Number of wins, draws and losses by Continual On-
line Evolutionary Planning (COEP) against three scripted
Protoss opening strategies performed by UAlbertaBot.

5 DISCUSSION
In some cases COEP can struggle, such as when it has to adapt to

the very aggressive zealot rush. Since our heuristic only takes the

enemy units, and not production buildings into account, COEP’s

ability to adapt is delayed, which is devastating during rushes. In

the future we plan to extend COEP to also take buildings into

account.

Designing the heuristic has been challenging as it needs to cor-

relate with the playing style of the underlying bot. UAlbertaBot

implements a speci�c behavior, which has its own quirks when it

comes to controlling larger groups of units or when it expands to

new bases. �e strategies preferred by our implementation involve

large armies with various unit types which require more advanced

micro-management compared to the simpler rush strategies. UAl-

bertaBot also displayed di�culties using more advanced units such

as reavers, high templars and shu�les, which limits the range of

possible unit combinations for our approach. UAlbertaBot was prob-

ably not designed to have an adaptive build order module which

requires a great deal of generality in its implementation. Develop-

ing a more advanced and general StarCra� bot, or improving upon

an existing bot, as well as fully incorporating COEP are important

next steps.

Instead of having a complete reactive approach it might be fruit-

ful to imagine what the opponent is doing along with our own

planning. Introducing co-evolution by also evolving build-orders

for the opponent player, could perhaps provide a more preventive

behavior.

6 CONCLUSIONS
�is paper presented a variation of Online Evolutionary Planning

called Continual Online Evolutionary Planning (COEP) that can per-

form adaptive build order planning in StarCra�. COEP implements

a discounted accumulated �tness function that favors short-term

rewards over long-term rewards. COEP was applied to an existing

StarCra� bot called UAlbertaBot, where it replaced the existing

macro-management module. �e results demonstrate that COEP is

capable of in-game build-order planning, continually adapting to

the changes in the game. While COEP still struggles against some

very aggressive rushes, it outperforms the built-in bot in StarCra�:

Brood War with a 91.7% win rate and can compete with a number

of scripted opening build orders performed by UAlbertBot.
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