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Playing Multiaction Adversarial Games: Online
Evolutionary Planning Versus Tree Search

Niels Justesen , Tobias Mahlmann, Sebastian Risi, and Julian Togelius

Abstract—We address the problem of playing turn-based
multiaction adversarial games, which include many strategy games
with extremely high branching factors as players take multiple
actions each turn. This leads to the breakdown of standard tree
search methods, including Monte Carlo tree search (MCTS), as
they become unable to reach a sufficient depth in the game tree.
In this paper, we introduce online evolutionary planning (OEP) to
address this challenge, which searches for combinations of actions
to perform during a single turn guided by a fitness function that
evaluates the quality of a particular state. We compare OEP to dif-
ferent MCTS variations that constrain the exploration to deal with
the high branching factor in the turn-based multiaction game Hero
Academy. While the constrained MCTS variations outperform the
vanilla MCTS implementation by a large margin, OEP is able to
search the space of plans more efficiently than any of the tested tree
search methods as it has a relative advantage when the number of
actions per turn increases.

Index Terms—Computational complexity, evolutionary compu-
tation, Monte Carlo tree search, tree search.

I. INTRODUCTION

ADVERSARIAL games, in which one player’s loss is the
other’s gain, have a long tradition as testbeds in artifi-

cial intelligence. In this context, playing the game well can be
viewed as a search from the current state of the game to desir-
able future states. In fact, many well-performing game-playing
programs rely on search algorithms that are guided by some
heuristic function that evaluates the desirability of a given state.
For adversarial two-player games with relatively low branching
factors, such as Checkers and Chess, search algorithms such as
Minimax together with well-designed heuristic functions per-
form remarkably well [1].

However, as the branching factor increases, the efficacy of
Minimax search is greatly reduced. In cases where it is hard to
develop or learn informative heuristic functions, this problem
is further compounded. A classic example is Go, where it took
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several decades of research to come up with algorithms that play
at world-class human level [2], [3].

While Go has a branching factor of “only” 300 (a magnitude
higher than the 30 for Chess), it is still far lower than most
of the turn-based multiaction adversarial games, where each
player takes multiple separate actions each turn, for example,
by moving multiple units or pieces. In this case, none of the
mentioned methods currently perform well. Examples of multi-
action turn-based adversarial games include strategy games such
as Civilization, Warhammer 40k, XCOM or Heroes of Might
and Magic but also card and board games such as the board
game Arimaa. This class of problems arguably also includes
many real-world problems involving coordination of multiple
agents.

By including multiple actions and multiple units, the branch-
ing factor quickly reaches intractable dimensions. For example,
a strategy game that allows the movement of six units every turn
and each unit can perform one out of ten actions has a branching
factor of a million (106). Standard tree search methods tend to
fail with such high branching factors because the trees become
very shallow. To allow tree search methods to be applied in such
circumstances, some authors resort to making strong assump-
tions to guide how to explore actions [4]. One naive assumption,
which is wrong in the general case, is independence between
units, which decreases the branching factor to only 60 rather
than a million.

Instead of relying on a tree-based search method, Perez
et al. introduced an evolutionary algorithm-based method for
playing nonadversarial games called rolling horizon evolution
(RHE) [5]. RHE evolves a sequence of game actions to perform
in the near future. The agent then performs the first action in
the found sequence and evolves a new sequence from scratch.
This process is continued a number of times until the game is
over. The RHE algorithms runs online during the game, differ-
ing sharply with the way evolution is typically applied in game
playing, in which a controller is evolved that determines the
actions of the agent [6]–[9]. The fitness function of an action
sequence is the desirability of the final state reached by perform-
ing these actions, which is estimated by some heuristic. RHE
has been successful in a number of real-time environments in-
cluding the physical traveling salesman problem [10] and in the
general video game playing benchmark [11], [12]. It is specifi-
cally designed for real-time games and thus cannot be directly
applied to adversarial games. Evolution can, however, still be
useful for these games by evolving a sequence of actions to take
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during a single turn. Finding the optimal combination of actions
to perform during just one turn is a formidable search problem
in itself due to combinatorial complexities.

The novel online evolutionary planning (OEP) algorithm in-
troduced in this paper searches for the actions to perform in
a single turn and uses an estimation of the state at the end of
the turn (i.e., right before the opponent takes their turn) as a
fitness function. We compare the OEP approach to Monte Carlo
tree search (MCTS) [13], which has shown to work well for
games with higher branching factors. MCTS handles higher
branching factors well by building an unbalanced tree and per-
forms state estimations by Monte Carlo simulations until the
end of the game. The advent of the MCTS algorithm caused
a qualitative improvement in the performance of Go-playing
programs [14], and MCTS has been part of almost every high-
level Go-playing program since including the world champion
AlphaGo [2].

The domain investigated in this paper is the multiaction ad-
versarial turn-based game called Hero Academy, a competi-
tive strategy game playable on PC and iPad. Because of the
extremely high branching factor of Hero Academy, we also
developed two variations of MCTS that attempt to limit ex-
ploration, resulting in a more focused search. The first MCTS
variation has a greedy tree policy, that always selects the most
valuable node, and a deterministic default policy during roll-
outs. The other variation prunes branches aggressively to push
the search in the most promising direction.

This paper builds and expands on results previously published
in conference proceedings [15]. In more detail, we added the
following:

1) two new variations of MCTS that aggressively constrain
the exploration to deal with the enormous action space of
multiaction games;

2) an investigation of how the methods perform with vary-
ing numbers of actions per turn, which demonstrates the
scalability of OEP;

3) a user study of 111 games with users of various skill levels,
showing the usefulness of applying OEP to a real game
product;

4) a deeper complexity analysis of the game Hero
Academy as well as a more in-depth discussion of the
results.

The new MCTS variations, bridge burning MCTS
(BB-MCTS) and nonexploring MCTS, are shown to outper-
form vanilla MCTS in this domain. While OEP performs slightly
worse than nonexploring MCTS in case of low numbers of ac-
tions per turn, it outperforms all other methods with increasing
numbers of actions. Additionally, the user study suggests that
OEP also performs well against human players. Only OEP was
tested against humans.

This paper begins with a brief review of relevant related work.
Section III describes the testbed used in our experiments, which
is a game called Hero Academy. Section IV describes OEP,
which is followed by a number of different tree search ap-
proaches including MCTS. Next, Section VII presents the ex-
perimental setup and results, and, finally, this paper concludes

with a discussion (see Section VIII) and conclusion (see
Section IX).

II. RELATED WORK AND BACKGROUND

This section reviews relevant work on MCTS and evolution-
ary algorithms that runs while the agent is playing a game. There
does not exist much work on multiaction adversarial games in
the literature.

A. Monte Carlo Tree Search

MCTS is a best-first search that uses stochastic sampling as a
heuristic [13], [16] and has been successfully applied to games
with large branching factors such as Civilization II [17], Magic
the Gathering [18], and Settlers of Catan [19]. The algorithm
starts with a root node representing the current game state. Four
phases are sequentially executed in iterations until a given time
budget is used or a satisfying goal state is reached. In the se-
lection phase, the tree is traversed from the root node using a
tree policy until a node with unexpanded children is reached. In
the expansion phase, a child node is expanded from the selected
node. In the simulation phase (also called rollout), the remain-
ing part of the game, from the expanded node’s game state, is
played out using a default policy. In the backpropagation phase,
the outcome of the game is backpropagated up the tree until the
root node is reached.

The tree policy determines how the search balances explo-
ration and exploitation during the selection phase. Usually, the
upper confidence bounds (UCB) algorithm is used [20], which
selects the node that maximizes

UCB1 = Xj + C

√
2 ln n

nj

where n is the visit count of the current node, nj is the visit
count of the child j, C is a constant determining the amount
of exploration versus exploitation, and Xj is the normalized
value of child j. The default policy is used during rollouts to
select actions, which can be a complex scripted policy or one
that selects random actions. An ε-greedy strategy can also be
used to select a random action at probability ε and at probability
1 − ε follows some predefined policy.

MCTS has shown promise for many nonadversarial games
as well, in particular with high branching factors, hidden in-
formation, and/or nondeterministic outcomes. To allow MCTS
to be applied to games with increasingly higher branching fac-
tors, a variety of different MCTS variations have been devel-
oped. Numerous enhancements exist for MCTS to handle large
branching factors, such as first-play urgency [21], which encour-
ages exploitation in the early stages by assigning a fixed score
to unvisited nodes. Another enhancement that has been shown
to improve MCTS in Go is rapid action value estimation [22],
which updates statistics in nodes, with a decreasing effect, when
their corresponding action is selected during rollouts. Portfolio
greedy search [23] and hierarchical portfolio search [24] intro-
duced a Script-based approach, which have also been applied
to MCTS [25], which deals with large branching factors in
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real-time strategy games by exploring a search space of scripted
behaviors instead of actions. Naı̈veMCTS builds a tree where
each node corresponds to a combination of actions, and the
exploration policy is based on a naive assumption that unit’s
actions are independent of other units’ actions [4]. Portfolio
greedy search and Naı̈veMCTS require that actions must be tied
to units, as is common in real-time strategy games. Progressive
strategies have been used to limit the search space with suc-
cess in Go [26] by focusing the search using domain knowledge
and then slowly unpruning nodes. Several progressive pruning
methods have shown to improve MCTS for Go [27], where the
idea is to prune nodes that are statistically inferior to their sib-
lings. Sequential halving splits the time budget into a number of
phases wherein exploration happens in a uniform manner, and
after each phase, the worst half of the nodes are eliminated [28].
MCTS can use macroactions (repeated actions) to reduce the
depth of the search tree, which can be beneficial in domains that
require continuous control [29].

B. Rolling Horizon and Online Evolutionary Algorithms

Evolutionary algorithms have been used to evolve controllers
for numerous games [8]. Usually, learning happens offline as a
fixed behavior is evolved in a training phase, while evolution
is not applied during the game. Genetic programing has been
used to evolve programs that can perform planning, where each
candidate planner is evaluated by simulating the outcome of its
generated plan [30]. Perez et al. introduced an evolutionary al-
gorithm called RHE that runs online while the agent is playing
to evolve action sequences. RHE has been applied, with good
results, to a number of real-time environments including the
Physical Traveling Salesman Problem [10] and many games in
the General Video Game Playing benchmark [11], [12]. RHE
evolves a sequence of actions for a fixed number of steps into
the future. After the time budget is used, the first action in the
most fit action sequence is performed, where after new actions
sequences are evolved from scratch one step further into the fu-
ture, i.e., the horizon is “rolling.” The evolved action sequences
are evaluated by simulating these in a forward model and eval-
uating the outcome. This paper introduces our algorithm OEP,
which can be applied to multiaction adversarial games, and was
first introduced in a conference paper [15]. OEP is more general
than RHE, as it does not include the “rolling” approach. Instead,
the entire time budget is used to evolve an action sequence for a
complete turn, which will be performed to end. This paper will
show that this algorithm works well in the turn-based adversar-
ial game Hero Academy. Building on our previous conference
paper [15], a portfolio-based version of OEP has already been
tested for small-scale battles in StarCraft [31] and a continual
variation of OEP for build order planning [32].

Another evolutionary algorithm that runs online while the
game is being played is real-time neuroevolution of augment-
ing topologies [33]. This approach improves the behavior of
multiple agents as the game is being played by replacing one in-
dividual every few game ticks with an offspring of the two most
fit individuals. This method is, however, not directly applicable

Fig. 1. The user interface of Hero AIcademy showing a battlefield of 9×5
squares with two deploy zones (yellow arrows) on each side, two crystals, and a
number of units on each team. The symbols in the bottom represent the player’s
hand, and the numbers below the doors show the deck sizes.

to the problem of searching for action sequences and is thus not
a planning algorithm.

III. TESTBED GAME: Hero Academy

Before we describe our evolutionary algorithm and the two
new MCTS variations in more detail, the testbed used for the
experiments in this paper is described, which is a game called
Hero Academy.1 In order to run experiments efficiently, we use
a simple clone of Hero Academy called Hero AIcademy.2

The two-player turn-based tactics game Hero Academy is in-
spired by chess, with battles similar to the ones in the Heroes
of Might & Magic series. An example game state in the Hero
AIcademy implementation is shown in Fig. 1. Each player has a
pool of combat units and spells at their disposal, which they
can deploy and use on a grid-shaped battle field of 9 × 5
squares. Special squares on the battlefield can boost a unit’s
attributes, while others allow the deployment of more units. Dif-
ferent classes of units have different combat roles, which allows
players to employ a variety of different tactics. For example,
the Council team has fighters, which are robust close-combat
units that knock opponents back and wizards that can cast a
powerful chain lightning spell, striking multiple units at once.
Other units include archers, which are long-ranged units, clerics
whose spells can heal friendly units, and a single ninja, a pow-
erful close-combat unit with the ability to swap position with a
friendly unit through teleportation. Each player has a hand of
up to six cards and a deck from which they draw new cards each
turn. Each card symbolizes either a unit, an item, or a spell.

The most central mechanic in the game is the usage of action
points (APs). Each turn, the active player starts with five AP,
which can be freely distributed among a number of different
types of actions. These types are the following.

1http://www.robotentertainment.com/games/heroacademy/
2https://github.com/njustesen/hero-aicademy



284 IEEE TRANSACTIONS ON GAMES, VOL. 10, NO. 3, SEPTEMBER 2018

1) Deployment: A unit can be deployed from the hand of
cards onto an unoccupied deploy zone.

2) Movement: One unit can be moved a number of squares
equal to or lower than its speed attribute.

3) Attacking: One unit can attack an opponent unit within the
number of squares equal to its attack range attribute.

4) Spell casting: Each team has one unique spell that can be
cast from the hand onto a square on the board, where after
the spell card is discarded.

5) Swapping a card: A card on the hand can be shuffled into
the deck in hopes of drawing other cards in the following
round.

6) Special: Some units have special actions such as healing
and teleportation. We will refer to healing as a unique
action type in this paper.

Especially noteworthy is that a player may choose to distribute
more than one AP per unit, i.e., let a unit act twice or more times
per turn. Because players make multiple actions per turn, we call
it a multiaction game. The first player to eliminate all enemy
units or crystals wins the game. When a unit loses all of its
health, it is not immediately removed from the game, but it
instead becomes knocked down. Knocked down units have to
be healed within one turn; otherwise, they are removed from
the game. Units from the other team can, however, spend an AP
during their turn to move a unit onto the square of a knocked
down unit to remove it immediately, which is called stomping.

Because there are two win conditions, players can either go
for one of them or try balance their strategy throughout the
game. However, the key challenges in the game are the puzzles
of finding the optimal action combination each turn. A clever
action combination using several units and different types of
actions can result in critical turnarounds during the game, and
it is usually hard to plan several turns ahead.

A. Complexity Analysis

Due to the AP mechanic in Hero Academy, which makes
the number of future game states significantly higher than in
other games, the game is challenging for decision-making algo-
rithms. Different combinations of actions can, however, result
in the same game state. It is hardly feasible to determine the
exact branching factor, as the number of allowed actions for a
unit highly depends on the configuration of units on the board.
Instead, it is trivial to estimate the branching factor by counting
the number of possible actions in a recorded game. By doing
this, we have estimated the branching factor to be 60 on average.
The average branching factor per turn can, thus, be estimated to
be 605 = 7.78 × 108 as players have five actions per turn. Also,
based on observation, we estimated the game length to be around
40 rounds on average. The game-tree complexity can, thus, be
estimated to ((605)2)40 = 1.82 × 10711 (the branching factor
of a turn is squared since both players take turn during a round).
The game-tree complexity of Chess is “just” 10120 [34]. Another
interesting complexity measure is the size of the state space, i.e.,
the number of possible board configurations. To simplify this es-
timation, items and cards are ignored, and only situations with

all four crystals on the board with full health are considered.
There are 45 − 4 − 2 = 39 possible squares to place a unit on a
9 × 5 board with two crystals and deploy zones for each player.
There can be between 0 and 26 units on the board, each with
a health value between 0 and around 800, which gives us the
following formula for estimating the state-space complexity:

26∏
n=0

n∏
i=1

((39 − i + 1) × 800) = 1.57 × 10199 . (1)

Since the board configuration is only one part of the game state
and items and cards are not considered, the state-space complex-
ity of Hero Academy is much larger than our estimated lower
bound. As a comparison, Chess has a state-space complexity of
1043 [34].

Hero Academy also introduces hidden information, as the
opponent’s cards are unknown, as well as the order of cards
in the deck. Stochastic games with hidden information can be
approached with various forms of determinization methods [35],
[36]. In this paper, we ignore the aspect of hidden information
and randomness, since we are only interested in ways to deal
with the complexities of multiaction games.

IV. ONLINE EVOLUTIONARY PLANNING

In this section, we present an evolutionary algorithm that,
inspired by the RHE, evolves strategies while it plays the game.
We call this algorithm OEP, and we have implemented it to
play Hero Academy, where it aims to evolve optimal action
sequences every turn. Each genome in a population, thus, rep-
resents a sequence of five actions. An exhaustive search is not
able to explore the entire space of action sequences within a
reasonable time frame and may miss many interesting choices.
An evolutionary algorithm, on the other hand, can explore the
search space in a very different way.

An overview of our OEP algorithm is presented next, which is
also shown in pseudocode (see Algorithm 1). Evolutionary algo-
rithms iteratively optimize an initially randomized population
of candidate solutions (genomes) through recombination and
selection based on elitism. When applied to planning in Hero
Academy games, the genotype of each genome in the population
is a vector of five actions, where one action represents a type and
one or more locations if needed. An example of a genotype is:
[Move((0, 4) → (2, 4)), Heal((2, 4) → (4, 4)), Heal((2, 4) →
(4, 4)), Attack((4, 0) → (6, 1)), Deploy(0 → (0, 4))], which is
also visualized in Fig. 2. Note that identical attack or heal ac-
tions can be repeated to deal more damage or gain more health.
Locations given in two dimensions are on the board (from the
top left square) and in one dimension are cards on the hand
(from left to right). The phenotype is the resulting game state
after taking these actions in the current game state.

The initial population is composed of random genomes,
which are created by repeatedly selecting random actions based
on the given forward model. This process is repeated until no
more APs are left. After the creation of the initial population,
the population is improved over a large number of generations
until a given time budget is exhausted.
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Fig. 2. Example of an evolved action sequence that demonstrates that OEP can find solid action sequences in Hero Academy. In this example a critical combination
is found that first heals the knocked down knight at (4, 4). Because the knight afterwards stands on an assault square, any damage towards crystals are doubled
which the archer utilizes by a lethal strike. (a) shows the initial state in the beginning of the red player’s turn and (b) shows the actions evolved by OEP. The
exact action sequence, shown in (b), is: [Move((0, 4) → (2, 4)), Heal((2, 4) → (4, 4)), Heal((2, 4) → (4, 4)), Attack((4, 0) → (6, 1)), Deploy(0 → (0, 4))].
The resulting state after performing the evolved action sequence and ending the turn is shown in (c). (a) Initial state. (b) Evolved actions. (c) Resulting state.

Algorithm 1: EOP for multiaction adversarial games (pro-
cedures PROCREATE, CROSSOVER, MUTATION, CLONE, and
EVAL are omitted for brevity).

1: procedure ONLINEEVOLUTIONARYPLANNING(State s)
2: Genome[] pop = ∅ �Population
3: INIT(pop, s)
4: while time left do
5: for each Genome g in pop do
6: clone = CLONE(s)
7: clone.update(g.actions)
8: if g.visits = 0 then � EVAL is deterministic
9: g.value = EVAL(clone)

10: g.visits++
11: sort pop in descending order by value
12: pop = first half of pop �50% Elitism
13: pop = PROCREATE(pop) �Mutation & Crossover
14: return pop[0].actions �Best action sequence
15:
16: procedure INIT(Genome[] pop, State s)
17: for x = 1 to POP_SIZE do
18: State clone = CLONE(s)
19: Genome g = new Genome()
20: g.actions = RANDOMACTIONS(clone)
21: g.visits = 0
22: pop.add(g)
23:
24: procedure RANDOMACTIONS(State s)
25: Action[] actions = ∅
26: Boolean p1 = s.p1 �Whose turn is it?
27: while s is not terminal AND s.p1 = p1 do
28: Action a = random available action in s
29: s.update(a)
30: actions.push(a)
31: return actions

In this paper, Hero AIcademy itself serves as the forward
model, and the fitness of an action sequence is calculated as the
difference between the values of both players’ units. Both the
units on the game board as well as those still at the players’
disposal are taken into account. The assumption behind this

TABLE I
BONUSES ADDED WHEN UNITS ARE EQUIPPED [USED BY eq(u)], AND

BONUSES ADDED WHEN UNITS STAND ON SPECIAL SQUARES [USED BY sq(u)]

Archer Cleric Knight Ninja Wizard

Equipment:
Dragonscale 30 30 30 30 20
Runemetal 40 20 −50 20 40
Helmet 20 20 20 10 20
Scroll 50 30 −40 40 50

Special squares:
Assault 40 10 120 50 40
Deploy −75 −75 −75 −75 −75
Defense 80 20 30 60 70
Power 120 40 30 70 100

particular fitness function is that the difference in units serves
as a good indicator, for which player is more likely to win. In
more detail, the value v(u) of unit u is calculated as follows:

v(u) = uhp + umaxhp × up(u)︸ ︷︷ ︸
standing bonus

+

equipment bonus︷ ︸︸ ︷
eq(u) × up(u)

+ sq(u) × (up(u) − 1)︸ ︷︷ ︸
square bonus

(2)

where uhp is the unit’s number of health points, sq(u) is a bonus
based on the type of the square the unit stands on, and eq(u) is a
bonus that depends on the unit’s equipment. The exact modifiers
are shown in Table I. The modifying term up(u) gives a negative
reward for knocked down units:

up(u) =

{
0, if uhp = 0
2, otherwise.

(3)

After the evaluation, the genomes with the lowest scores
are removed from the population. Each one of the remaining
genomes is paired with another randomly selected genome, cre-
ating a new offspring through uniform crossover. Fig. 3 shows
the crossover between two example action sequences in Hero
Academy. Because a naive crossover can lead to illegal action
sequences, the crossover checks for the legality of a move when
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Fig. 3. Uniform crossover example in Hero Academy. Genes (actions) are
randomly picked from the two parents.

two sequences are combined. For example, to be able to move
a unit from a certain position on the board, it is required that
a unit, in fact, stands on that particular square. However, this
precondition might not be fulfilled due to an earlier action in
the sequence. To avoid such situations, actions are only selected
from a randomly chosen parent if it can be performed legally;
otherwise, the action will be taken from the other parent. If nei-
ther one of the two actions results in a legal move, the next action
in the parent’s sequence is chosen. In case this fails as well, a
completely random available action is selected. Additionally,
a certain proportion of the created offspring is mutated to in-
troduce new actions to the population. Mutation changes one
randomly chosen action to another legal action. If this results
in an illegal action sequence, the following part of the sequence
is changed to random but legal actions. Legality is checked by
requesting the framework for available actions at each state by
traversing the offspring’s actions sequence.

To incorporate information about possible counter moves, at-
tempts were made to base the heuristic on rollouts. Here, fitness
is determined by performing one rollout with a depth limit of
five actions, corresponding to one turn. When a genome is tested
more than once (because it has survived several generations in
the population), the lowest value found in the genome’s evalua-
tions is used. The rating of an action sequence, thus, depends on
the best of the known countermoves. Because our experiments
did not show any significant difference between a stochastic
rollout as a fitness measure and a static evaluation, the later was
chosen for the experiments in this paper. The large branching
factor in this game is possibly the reason why evaluations are
unreliable when based on a low number of rollouts.

V. TREE SEARCH

A game tree can be described as an acyclic directed graph
with the root node being the current game state. Edges in the

graph represent available actions in the game that lead from
one state to other hypothetical future game states. Therefore,
the number of edges from a node corresponds to the number of
actions available to the active player in that game state. Nodes
also have certain values assigned to them, where higher values
indicate more desirable game situations. For many adversarial
games, in which the utility of one agent is the opposite of the
other, agents take turns, and thus, the active player alternates
between plies of the tree. In these situations, the well-known
Minimax algorithm can be applied. However, in Hero Academy,
players can take several actions before the end of their turn. A
potential tree search setup for Hero Academy could be to encode
multiple actions as a joint action (i.e., an array of actions) that is
assigned to each edge. However, because of the high number of
possible permutations and therefore increased branching factor,
we decided to model each action as its own node, essentially
trading tree breath for depth.

In the following, we will present five game-playing tree-
search methods for Hero Academy. Two of these are simple
game-tree-based methods, which were used as baselines, fol-
lowed by MCTS including two novel variations.

Greedy Action: The greedy search among actions method is
the simplest of the developed methods. Greedy Action performs
a one-ply search among all possible actions, and based on the
employed heuristic, (2) selects the action that leads to the most
promising game state. The search is invoked five times to com-
plete a turn.

Greedy Turn: The greedy search among turns performs a
five-ply depth-first search, which corresponds to a full turn. The
same heuristic as for Greedy Action rates all leaf nodes states
and selects the action sequence that leads to the highest rated
state. A transposition table keeps track of already visited game
states so that they are not visited again. Because this search is
usually not exhaustive, choosing which actions to try first (i.e.,
action sorting) is critical.

Vanilla MCTS: Following the two greedy search variants,
the vanilla MCTS method was implemented with an action-
based approach. In other words, one ply in the tree represents
an action, not a turn. Therefore, a search with a depth of five
has to be performed to reach the beginning of the opponent’s
turn. Our vanilla MCTS agent implements the four phases de-
scribed in Section II-A, which follows the traditional MCTS
algorithm using UCB [14]. The standard MCTS backpropaga-
tion was modified to handle two players with multiple actions.
Our approach [15] is an extension of the BackupNegamax [14]
algorithm (see Algorithm 2). It uses a list of edges reflecting the
traversal during the selection phase, a Δ value corresponding to
the result of the simulation phase and a Boolean p1 that is true
if player one is the max player and false otherwise.

An ε-greedy approach is employed in the rollouts that com-
bines random play with the highest rated action based on the
amount of damage dealt/healed. Rollouts that stop prior to a
terminal state are evaluated by our heuristic [see (2)].

As players in Hero Academy have to select five actions, two
different approaches were tried: in the first approach, the agent is
invoked five times sequentially, with each iteration using a fifth
of the total time budget, whereafter the actions are executed in
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Algorithm 2: A multiaction game modification of the Back-
upNegamax algorithm [15].

1: procedure MULTINEGAMAX(Edge[] T , Double Δ,
Boolean p1)

2: for all Edge e in T do
3: e.visits++
4: if e.to �= null then
5: e.to.visits ++
6: if e.from = root then
7: e.from.visits ++
8: if e.p1 = p1 then
9: e.value += Δ

10: else
11: e.value −= Δ

the order found. However, another approach was found to be
superior that uses the entire time budget, whereafter the tree is
traversed from the root by selecting the best five nodes (actions)
until the opponents turn is reached. This will allow the tree to
expand as much as possible before actions are selected, and
thus, more options that are complete will be considered within
the time budget.

The following describes two novel exploration-constrained
variations of MCTS. We will refer to MCTS without these ex-
tensions as Vanilla MCTS.

Nonexploring MCTS: The search trees created by MCTS will
barely be able to reach into the opponent’s turn due to the
complexity of the game. To overcome this, we have developed
a variation of MCTS that uses a nonexploring tree policy, i.e.,
C = 0, in combination with deterministic rollouts. All children
of a node are still visited at least once before any of them
are expanded further. This ensures that a very limited form of
exploration still occurs, and since rollouts are deterministic,
controlled by a greedy policy, it is acceptable to value children
based only on one visit. If stochastic rollouts were used instead,
some branches would never be revisited when rollouts happen
to return unlucky outcomes.

BB-MCTS: Another novel approach to MCTS in multiaction
games is what we call the BB-MCTS. This approach splits the
time budget into a number of sequential phases equal to the
number of actions in a turn. During each phase, the search
functions as an ordinary MCTS search. However, in the end of
each phase, all but the most promising node from the root are
pruned and will never be added again. Another way to implement
the same behavior is to treat the most promising child node as
the root of the tree in the following phase. This approach is,
thus, an aggressive progressive pruning strategy that will enable
the search to reach deeper plies with the drawback of ignoring
parts of the search space. The name bridge burning emphasizes
that the nodes are aggressively pruned and can never be visited
again. Fig. 4 shows how nodes are pruned in three phases in a
multiaction game with three actions in a turn.

For the tree-search methods, it makes sense to investigate
the most promising moves first, and thus, a method for sorting
actions is useful. A simple way would be to evaluate the

Fig. 4. Example of how nodes are progressively pruned using the bridge
burning strategy in three phases to force the search to reach deeper plies (action
steps). (a) After the first phase, all nodes except the most promising in ply one
are pruned. (b) and (c) Search continues where after nodes are pruned one ply
deeper.

resulting game state of each action, but this is usually a slow
method. Instead, attack and spell actions are rated by how much
damage they will deal, heal actions (including healing potions)
by how many health points they will heal, equip actions by
pu (hu/mu ), where pu , hu , and mu are the power (equivalent
to damage output) of the equipped unit u, health points, and
maximum health points. Movement actions are given a 30-point
rating if movement is to a special square type and 0 otherwise.
If an enemy unit is removed from the game, it is given a 2mu

point rating. If a knocked down unit u is healed, the rating
of the action is mu + |eu | × 200, where |eu | is the number of
items carried by the healed unit u.

BB-MCTS is to some extend similar to an extreme imple-
mentation of sequential halving where only one node survives,
and the number of phases is fixed to the number of actions.

VI. EXPERIMENTAL SETUP

Here, the experimental setup is described, which is the basis
for the results presented in the next section. Each method played
100 games (as the Council team) against all other methods, 50
games as the starting player and 50 games as the second player.
Fig. 1 shows the map used. In contrast to the original game,
Hero AIcademy was configured to be deterministic and without
hidden information to focus our experiments on the challenge
of performing multiple actions. Each method was limited to one
processor and had a time budget of 6 s each turn. The winning
percentages of each matchup counted draws as half a win for
each player. While the rules of the original Hero Academy do
not include draws, in these experiments, a draw was called if no
winner was found in 100 rounds. The experiments were carried
out on an Intel Core i7-3517U CPU with 4× 1.90 GHz cores and
8 GB of ram. The specific configurations for the implemented
game-playing methods were as follows.

Vanilla MCTS: The traditional UCT tree policy Xj +
2C

√
(2 ln n/nj) was employed with an exploration constant of

C = (1/
√

2). The default policy was ε-greedy, where ε = 0.5.
A transposition table was implemented with the descent-path
only backpropagation strategy. Thus, values and visit counts
are stored in edges [37]. In fact, nj in the tree policy is
extracted from the child edges instead of the nodes. Rollouts
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TABLE II
WIN PERCENTAGES OF THE AGENTS LISTED IN THE LEFT-MOST COLUMN IN 100 GAMES AGAINST AGENTS LISTED IN THE TOP ROW

Random Greedy Action Greedy Turn Vanilla MCTS Non-expl. MCTS BB-MCTS OEP

Greedy Action 100% – 36% 51.5% 2% 7.0% 2.0%
Greedy Turn 100% 64.0% – 88.0% 23.0% 26.5% 19.5%
Vanilla MCTS 100% 48.5% 22.0% – 0.0% 4.5% 2%
Non-exploring MCTS 100% 98.0% 77.0% 100% – 80.0% 58.0%
BB-MCTS 100% 93.0% 73.5% 95.5% 20.0% – 48.0%
OEP 100% 90.0% 80.5% 98% 42.0% 52.0% –

A win percentage of 62% or more is significant with a significance level of 0.05 using the Wilcoxon Signed-Rank Test.

were depth-limited to one turn, following the heuristic state eval-
uator described in Section IV. Preliminary experiments showed
that short rollouts are preferred over long rollouts for MCTS in
Hero Academy, and that rollouts of just one turn show the best
performance. Additionally, by adding some domain knowledge
to the default policy through a specific ε-greedy strategy, the
performance improves; ε-greedy selects a greedy action equiv-
alent to the highest rated action by the action sorting method
with a probability of ε, and a random action otherwise.

BB-MCTS: Same as for Vanilla MCTS, but with the Bridge
Burning strategy as well.

Nonexploring MCTS: Same as for Vanilla MCTS, but with
the exploration constant C = 0 and the default policy ε-greedy,
where ε = 1, such that rollouts are deterministic following the
action sorting heuristic (see Section V).

OEP: The population size was 100 with a survival rate of 0.5,
a mutation probability of 0.1, and a uniform crossover operator.
These parameters were found through prior experimentation.

The MCTS-based methods and OEP employ action pruning,
which reduces the large search space of a turn by removing
(pruning) redundant swap actions and suboptimal spell actions
from the set of available actions in a state. Swap actions are
redundant if they swap the same kind of item (i.e., they will pro-
duce the same outcome) and can thus be removed. Additionally,
spell actions are suboptimal if other spell actions cover the same
or more enemy units.

VII. RESULTS

Our results, shown in Table II, show the performance of each
method. The nonexploring MCTS is the best performing method
but with no significant difference compared to OEP and BB-
MCTS, which have a similar performance. Vanilla MCTS plays
on the same level as the greedy action baseline, which indicates
that it is able to identify the action that gives the best immediate
reward, while it is unable to search sufficiently through the
space of possible action sequences. All methods convincingly
beat random search. A video of OEP playing against the greedy
action baseline has been uploaded to YouTube.3

A. Search Characteristic Comparison

To get further insights into how the different methods explore
the search space, the number of different action sequences each

3https://www.youtube.com/watch?v=WYGwBbccYCQ

method is able to evaluate within the given time budget was
tracked. Since many action sequences produce the same out-
come, only the number of unique outcomes evaluated by each
method were counted and only those after taking five actions.
The “greedy turn” search evaluated 579 912 unique outcomes
on average during a turn. OEP evaluated on average 9344 unique
outcomes and MCTS only 201. Each node at the fifth ply of the
MCTS tree corresponds to one outcome, and the search only
manages to expand the tree to a limited number of nodes at this
depth. Further analysis reveals that the average depth of leaf
nodes in the final MCTS trees is 4.86 plies, while the deepest
leaf node of each tree reached an average depth of 6.38 plies.
This means that the search tree just barely enters the opponents’
turn even though it manages to run an average of 258 488 iter-
ations per turn. OEP ran an average of 3693 generations each
turn but appeared to get stuck at local optima quickly due to
the low number of unique outcomes evaluated. These results
suggest that OEP would play almost equally good with a much
lower time budget, but also that there could be room to improve
the algorithm itself.

B. Changing the Number of Actions

Multiaction games can have many forms and Hero Academy
is just one example. An additional experiment was performed, in
which our methods were tested in variations of Hero Academy.
The rules were altered by changing the number of APs per turn
to 1, 3, 5, 10, 15, 20, and 25. This also increases the complexity
of one turn exponentially. The time budget in this experiment
was set to 2000 ms, and the turn limit to 5/AP × 100. Reaching
the turn limit results in a draw, which is counted as half a win
for both players. Only MCTS with our two variations as well
as OEP are included in this experiment, as it makes the most
interesting comparison. The results, which are plotted in Fig. 5,
show the win percentage of OEP against each MCTS variation
in 100 games. The results show that OEP handles the increased
number of APs best with a win rate of 55% or more with 10
or more AP against any of the other methods. This indicates
that OEP has the best scalability in terms of complexity in
multiaction games. Increasing the number of AP to 20 and more
makes it possible to win the game in a few turns. This make the
outcome of the game highly depend on who gets to start. Vanilla
MCTS does, however, not show that it is able to identify these
fast win strategies.
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Fig. 5. Average win percentages of OEP versus BB-MCTS, nonexploring
MCTS, and Vanilla MCTS. 100 games were played in each matchup for each
game configuration, which each had a different number of AP per turn. This
shows that MCTS, including the two variations, performs best with few AP per
turn, while OEP performs best with many AP per turn. Error bars show 95%
confidence intervals.

C. Versus Human Players

One important and often overseen experiment is to test game-
playing algorithms against human players. Such comparisons
can provide important insights about the current state of a
method, and whether there is promise implementing it in a real
game product. Since OEP, BB-MCTS, and nonexploring MCTS
show similar performance in games with five APs per turn, we
suspect this is also the case when compared against humans.
Thus, in this paper, we focus on only testing OEP against hu-
man players but believe a more comprehensive comparison that
includes MCTS remains important future work. One hundred
and eleven games were recorded, which were played with hid-
den information and randomness as in the actual game. It makes
no difference for OEP whether or not the game contains ran-
domness as it only considers its own turn. The Hero AIcademy
client was distributed on social networks and community web
sites for Hero Academy players to reach a sufficient number of
players with various skill level. The client was extended to push
game events to a web server every turn to be stored in a database.
Unfortunately, we do not know the number of participants, only
the number of games played in total. The client asked players
about their skill level prior to each game with the options begin-
ner, intermediate, and expert. If beginner was selected, a very
short introduction to the game was presented before the game
started. One hundred and eleven game records were collected,
and the results are shown in Table III. In 56 of the 111 games,
the game was quit before a terminal state was reached, possi-
bly as a way of surrendering. Of the games that reached the
end, the human players won 41 out of 55 games. Games that
were quit before a winner was found were evaluated using the
heuristic described in Section IV to determine a winner. Games
were, however, excluded if the heuristic estimated an advantage
lower than 10% of the maximum to either of the players. By

TABLE III
NUMBER OF WINS BY HUMAN PLAYERS OF VARIOUS SKILL

LEVELS IN 85 GAMES AGAINST OEP

Skill level Human wins (a) Human wins (b)

Beginner 13/26 (50%) 19/45 (42.2%)
Intermediate 12/13 (92%) 15/19 (78.9%)
Expert 16/16 (100%) 20/21 (95.2%)

All 41/55 (80%) 54/85 (63.5%)

(a) shows results from games that ended with a winner, and
(b) also includes games where the player quit prematurely.

including these games, the human players won only 63.5% of
the games showing that many players left the game while they
were behind. These results show that OEP is competitive against
human players while being inferior to expert players and some
intermediate players.

VIII. DISCUSSION

The results show that OEP performs better than all tree search
methods for most of the settings of our benchmark, and as
the number of actions per turn (and thus the branching factor)
increases, the relative advantage of OEP over tree search seems
to increase. The crucial question is why this is so. Answering
this question will require much further research and is likely
to contribute to our understanding of planning in general with
broad domain-general implications. Our current understanding
is that tree search algorithms, which by definition start from
the root node of the tree and explore outward, concentrate their
search on the part of plan space closest to the root in problems
with a high branching factor. However, all parts of the plan are
important. By seeing the plan as a string and searching the space
of strings, the evolutionary planning approach ensures that the
search considers full plans instead of focusing on the region
around the origin.

Vanilla MCTS is unable to deal with the complexity of Hero
Academy as the search space is simply too large. A similar con-
clusion has been made for the game Arimaa, in which the player
makes four actions each turn [38]. We show that by constrain-
ing the exploration of MCTS, performance can be significantly
improved. In the future, it will be interesting to compare our
approaches to MCTS with optimized parameters as well as ex-
isting MCTS enhancements that have shown to work well in
Go, such as progressive strategies [26], [27]. They would most
likely need to be configured to constrain the exploration aggres-
sively as our methods do. MCTS was not designed to deal with
multiple actions each turn, and little research has been done on
problems of this type. Clearly, more research is needed since
many strategy games are multiaction games, which may also
model real-life decision making.

One problem with OEP is that it does not take the oppo-
nent’s turn into account. This could perhaps be achieved with
competitive coevolution [39] by having another population for
the seconds player’s turn and let the genomes in each population
compete when determining their fitness. One problem with this
idea is that evolved action sequences in the other population
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highly depend on the outcome of the action sequences in the
first population (e.g., attacking a certain square is only effective
if the opponent actually moves a unit there). Coevolution has
already been tested for the RHE for games with small branching
factors [40], and applying this to OEP for multiaction games is
an interesting direction for future research. OEP reached an op-
timum with only a small amount of generations, which means
that it either finds the global optimum or is stuck locally. Diver-
sity maintenance methods (such as niching [41]) or Tabu search
could perhaps improve the performance [42]. Finally, it would
be very interesting to see how OEP performs in more complex
multiaction games.

IX. CONCLUSION

This paper described and compared three methods for play-
ing adversarial games with very large branching factors. Such
branching factors, while extreme in comparison to classical
board games, are common in strategy games and presumably
also in the real-world scenarios they model. To tackle this chal-
lenge, we propose OEP. The core idea is to use an evolutionary
algorithm to search for the next turn, where the turn is com-
posed of a sequence of actions. We compared this algorithm
with several other algorithms on the game Hero Academy; the
comparison set includes MCTS, which is the state of the art
for many games with high branching factor, as well as two new
variations of MCTS designed to better handle the high branch-
ing factor. Nonexploring MCTS does not explore other paths
than the currently most promising one and uses deterministic
rollouts, while BB-MCTS deepens the search by periodically
removing upper parts of the tree so that only lower parts are
explored. Our results show that both OEP and the two new
MCTS variations convincingly outperform standard MCTS as
well as a depth first search on this problem. As for the relative
performance of the new methods, nonexploring MCTS slightly
outperforms OEP on small numbers of actions, but as the num-
ber of actions per turn (and therefore the branching factor) is
increased, OEP’s superiority over other approaches increases.
Wang et al. also conclude that OEP outperforms MCTS when
the complexity of the problem increases [31]. We further tested
OEP’s ability to play against human players of various skill lev-
els. OEP was able to win 31 games out of 85 (36.5%) and can
play competitively against human players with a low-to-medium
skill level while being easily outplayed by medium-to-high-level
players. Future work will investigate how well this performance
holds up in other games, and how to improve the evolutionary
search.
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