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Abstract—Reward shaping allows reinforcement learning (RL)
agents to accelerate learning by receiving additional reward
signals. However, these signals can be difficult to design manually,
especially for complex RL tasks. We propose a simple and
general approach that determines the reward of pre-defined
events by their rarity alone. Here events become less rewarding
as they are experienced more often, which encourages the
agent to continually explore new types of events as it learns.
The adaptiveness of this reward function results in a form of
automated curriculum learning that does not have to be specified
by the experimenter. We demonstrate that this Rarity of Events
(RoE) approach enables the agent to succeed in challenging
VizDoom scenarios without access to the extrinsic reward from
the environment. Furthermore, the results demonstrate that RoE
learns a more versatile policy that adapts well to critical changes
in the environment. Rewarding events based on their rarity could
help in many unsolved RL environments that are characterized
by sparse extrinsic rewards but a plethora of known event types.

I. INTRODUCTION

Deep reinforcement learning and deep neuroevolution have
achieved impressive results learning to play video games
[17] and controlling both simulated and physical robots [2,
9, 15, 27]. These approaches, however, struggle to learn in
environments where feedback signals (also called rewards)
are sparse and/or delayed. A popular way to overcome this
issue is to shape the reward function with prior knowledge
such that the agent receives additional rewards to guide its
learning process [22, 23, 31]. Another approach is to gradually
increase the difficulty of the environment to ease learning
through curriculum learning [4, 46]. Both approaches are time-
consuming, require substantial domain knowledge and are
especially difficult to implement for complex environments.
In this paper, we propose a simple method that automatically
shapes the reward function during training and performs a
form of curriculum learning that adapts to the agent’s current
performance. The only required domain knowledge is the
specification of a set of positive events that can happen in
the environment (e.g. picking up items, moving, winning etc.),
which is easy to implement if raw state changes are accessible.

The method introduced in this paper rewards a reinforce-
ment learning (RL) agent by the rarity of experienced events
such that rare events have a higher value than frequent events.
The idea is to completely discard the extrinsic reward and
instead motivate the agent intrinsically toward a behavior that

explores the pre-defined events. As the agent first experiences
certain types of events that are relatively easy to learn (e.g.
moving around and picking up items) they will slowly become
less rewarding, pushing the agent to explore rare and poten-
tially more difficult events. Thus by only rewarding events
for their rarity, the system performs a form of automated
curriculum learning.

The goal of this approach is to learn through a process of
curiosity rather than optimizing toward a difficult pre-defined
goal. We apply our method, called Rarity of Events (RoE),
to learn agent behaviors from raw pixels in the VizDoom
framework [19]. While our approach could be applied to
any reward-based learning method and possibly also fitness-
based evolutionary methods, in this paper we train deep
convolutional networks through the actor-critic algorithm A2C
[29]. In the future, RoE could offer a new way to learn
versatile behaviors in increasingly complex environments such
as StarCraft, which is a yet unsolved reinforcement learning
problem [44].

The paper is structured as follows. We first review relevant
previous work, including related approaches in Section II.
After explaining RoE (Section III), we demonstrate the use-
fulness of the method on five challenging VizDoom scenarios
with sparse rewards and show how RoE learns a versatile
behavior that can adapt to critical changes in the environment
(Section V).

II. PREVIOUS WORK

A. Deep Reinforcement Learning

Deep reinforcement learning allows learning agent behav-
iors in video games directly from screen pixels, including Atari
games [28], first-person shooters [19, 22, 46], and car racing
games [29]. These methods are typically variants of Deep Q
Networks (DQN) [28] or actor-critic methods with parallel
actor-learners such as Asynchronous Advantage Actor-Critic
(A3C) [29]. Neuroevolution [13, 36] has also recently shown
promising results in playing Atari games and can be easier to
parallelize [39, 43].

A key requirement for deep RL methods to work out of
the box are frequent and easy obtainable reward signals from
the environment that can guide learning toward an optimal
behavior. An infamous Atari game where this is not the case



is Montezuma’s Revenge; for this game with very sparse
rewards, both DQN and A3C variants fail [28, 29].

The lack of frequent reward signals can be overcome by
reward shaping, where a smoother reward function is designed
using prior domain knowledge [22, 23], or by gradually
increasing the difficulty of the environment (e.g. the level itself
or the NPCs’ behaviors) to ease learning through curriculum
learning [4, 46]. Related to curriculum learning is a method
called Power Play that searches for new unsolvable problems
while the agent is trained to progressively match the difficulty
of the environment [41]. Another related approach is hierar-
chical reinforcement learning where a meta-controller controls
one or more sub-policies that are trained to reach sub-goals
(equivalent to events) [7, 20].

B. Curiosity & Intrinsic Motivation

In curiosity-driven learning the agent seeks to explore
new situations guided by intrinsic motivation [18, 32, 38].
One theory of intrinsic motivation is reduction of cognitive
dissonance, i.e. the motivation to learn a cognitive model that
can explain and predict sensory input [12, 33]. This theory
has also been formalized in the context of RL in which agents
are intrinsically rewarded when observing temporarily novel,
interesting, or surprising patterns based on their own world
model [40]. A related idea is optimal incongruity, where dis-
crepancies between the currently perceived and what is usually
perceived produce a high stimulus; thus novel situations that
yet lie within our current understanding are highly rewarding
[5, 16]. The prediction error of a learning model can thus be
used directly to define the reward function [14].

One way of implementing intrinsic motivation is to model
the expected learning progress ζ(s, a) of a state-action pair
[25]. The Intrinsic Curiosity Module (ICM) is another ap-
proach that encodes states st and st+1 into features Φ(st)
and Φ(st+1) and determines the intrinsic reward based on
the prediction error of these features and the forward model’s
features [34]. State-density models that assign probabilities to
screen images, can be learned together with a policy and then
determine intrinsic motivation as the model’s temporal change
in prediction, such that surprising screen images produce
higher rewards [3].

Rewarding RL agents based on the novelty of events has
been explored earlier with tabular Q-learning in a simple 3D
environment [26], where the reward is highest when novelty
is moderate. A combination of habituation theory and self-
organizing maps was employed to vary the agent’s curiosity
(the reward signal toward certain events).

C. Novelty Search

The pursuit of novel situations also shares some similarities
with novelty search [24] in evolutionary computation. The idea
of novelty search is to search for novel behaviors instead of
optimizing toward a specific objective directly. Both novelty
search and our approach RoE push the search toward unex-
plored areas; however, novelty search does so for a population
of individuals where novelty is defined as the behavioral

distance to other behaviors in the population. Our approach is
trained through reinforcement learning and novelty (or rather
rarity of events) is based on experiences of previous versions
of the policy.

D. VizDoom
The approach in this paper is tested in VizDoom, an AI

research platform based on the commercial video game Doom
that allows learning from raw visual information [19]. The
VizDoom framework includes several diverse environments,
some of which are very challenging to learn due to their sparse
and delayed rewards. Several deep RL approaches have been
applied to Doom, which include auxiliary learning [21, 22],
game-feature augmentation [6, 8, 11], manual reward shaping
[8, 11, 22], and curriculum learning [46]. A very different
approach by Alvernaz and Togelius applies neuroevolution
on top of a pre-trained auto-encoder [1]. In this paper, we
purposefully build on a vanilla implementation of the RL
algorithm A2C, to set a baseline for how well RoE can help
in challenging VizDoom scenarios.

III. APPROACH

This section describes our Rarity of Events (RoE) approach
and its integration with A2C in VizDoom.

A. Rewarding Temporally Rare Events
The reward function in RoE adapts throughout training to

the policy’s ability to explore the environment. By rewarding
events based on how often they occur during training, the agent
is intrinsically motivated toward exploring new parts of the
environment rather than aiming for a single goal that might be
difficult to obtain directly. In effect, the approach performs a
form of curriculum learning since events are rewarded based
on the agent’s current ability to obtain them. As the agent
learns, it becomes less interested in events that are frequent
and curious about newly discovered events.

Our method requires a set of pre-defined events, and the
reward Rt(εi) for experiencing one of these events εi at time
t is determined by its temporal rarity 1

µt(εi)
, where µt(εi) is

the temporal episodic mean occurrence of εi at time t, i.e.
how often εi occurs per episode at the moment. The mean
occurrences of events are clipped to be above a lower threshold
τ (we used 0.01 such that the maximum reward for any event
is 100). For a vector of event occurrences x, such that xi is
the number of times εi occurred in a game step, the reward is
the sum of all event rewards:

Rt(x) =

|x|∑
i=1

xi
1

max(µt(εi), τ)
. (1)

The rarity measure 1
µt(εi)

is not arbitrary but is designed
such that all events have equal importance. If any event εi
is experienced n times during an episode, and n = µt(εi)
(which is the expected amount), then the accumulated reward
for εi is 1 regardless of the rarity. This means that in theory
all events have equal importance. In practice, the policy might
learn that some events have a negative or positive influence
on the occurrence of others.



B. Determining the Temporal Episodic Mean Occurrence

There are arguably many ways to determine the temporal
episodic mean occurrence µt(εi); here we employ a sim-
ple approach that nevertheless achieves the desired outcome.
Whenever an episode during training reaches a terminal state,
a vector ε containing the occurrence of events in this episode is
added to a buffer of size N . The size of the buffer determines
the adaptability of the reward function. If N is small, the agent
quickly becomes bored of new events as it easily forgets their
rarity in the past. If N is large, the agent will stay curious for a
longer period of time. The temporal episodic mean occurrence
µt(ε) is then determined as the mean of all records in the
buffer, i.e. the episodic mean of the last N episodes.

C. Events in Doom

We track 26 event types in VizDoom by implementing a
function that determines which events occur in every state
transition (i.e. in each time step). The event types include
movement (one unit), shooting (decrease in ammo), picking
up an item (one event for each item type; health pack, armor,
ammo, and weapons 0–9), killing (one for each weapon type
0–9 as well as one regardless of weapon type). Movement
events are triggered when the agent has traveled one unit from
the position of the last movement event (or the initial position
if the agent has not yet moved).

D. Policy

The presented reward shaping approach can be applied
to most (if not all) RL methods that learn from a reward
signal. It could potentially also be applied to evolutionary
approaches such as Evolution Strategies by defining fitness as
the sum of rewards in an episode. A standard policy network
is employed that has three convolutional layers followed by
a fully connected layer of 512 units, and a policy and value
output. We use filter sizes of [32, 64, 32] with strides [4, 2,
1], ReLU activations for hidden layers, and softmax for the
policy output.

The input is a single frame of 160×120 pixels in grayscale,
cropped by removing 10 pixels on top/bottom and 30 pixels on
the sides and then resized to 80×80. In most of the scenarios,
the agent can perform four actions: attack, move forward, turn
left, and turn right. In this case, the policy output has 24 = 16
values to allow any combination of the four actions. The event
buffer is updated whenever a worker reaches a terminal state.
The rewards from VizDoom, which vary between -100 and
100, are normalized to [0, 1]. Rewards based on our approach
are not normalized and vary between [0, 100] (due to τ =
0.01), while for all events where µt(εi) ≥ 1 the reward will
be between 0 and 1 (following Equation 1 in Section III-A).

E. Advantage Actor-Critic (A2C)

The deep networks in this paper are trained with the deep
reinforcement learning algorithm A2C, a synchronous variant
of Asynchronous Advantage Actor-Critic (A3C) [29], which
is able to reach state-of-the-art performance in a wide range
of environments [42, 45, 47].

A2C is an actor-critic method that optimizes both a policy
π (the actor) and an estimation of the state-value func-
tion V (s) (the critic). Parallel worker threads share the
same model parameters and synchronously collect trajec-
tories (st, st+1, at, rt+1) for tmax game steps where after
the model’s parameters are updated. Threads restart new
episodes individually when they are done. The discounted
return Rt =

∑k−1
i=1 γ

irt+i + γkV (st+k), where k is the
number of trajectories collected after t, and the advantage
A(st, at) = Rt−V (st) is determined for each step, for every
worker. A2C then uses the traditional A3C update rules in
[29] based on the policy loss log π(ai|si)A(si) and value loss;
the mean squared error between the experienced Rt and the
predicted V (st): 1

2 (Rt − V (st))
2. In contrast to A3C, A2C

updates the parameters synchronously in batches.

Fig. 1: The five ViZdoom scenarios. Scenarios with multiple spawning
positions randomly select one of them at the start of an episode. The episode
ends when the goal armor, which only appears in My Way Home and Deadly
Corridor, is picked up. The agent periodically looses health when standing
on acid floors.

IV. VIZDOOM TESTING SCENARIOS

This section describes the five VizDoom scenarios used in
our experiments. They all have sparse and/or delayed rewards
and are therefore a good test domain for our approach. The
scenarios are from the original VizDoom [19] repository1.

1https://github.com/mwydmuch/ViZDoom/tree/master/scenarios



For each scenario we also detail the extrinsic reward from
the environment, which is used when training models without
RoE. Some of these extrinsic rewards were rescaled to be
coherent across scenarios. If not stated otherwise, the agent
can move forward, turn left, turn right, and shoot. Screenshots
from these scenarios are shown in Figure 2, with top-down
views in Figure 1.

1) Health Gathering: The goal is to survive as long as
possible in a square room with an acid floor that deals damage
periodically. Medkits spawn randomly in the room and can
help the agent to survive as they heal when picked up. The
agent is rewarded 1 for every time step it is alive, and -100
for dying. The maximum episode length is 2,100 time steps.
The agent cannot shoot.

2) Health Gathering Supreme: Same as Health Gathering
but within a maze.

3) My Way Home: The goal is to pick up an armor, which
gives a reward of 100 and ends the scenario immediately. The
agent cannot shoot and is rewarded -0.1 for every time step it
is alive. The agent starts an episode at one of the randomly
chosen spawn locations with a random rotation.

4) Deadly Corridor: Similarly to My Way Home, the goal
is to pick up an armor, which gives a reward of 100 and ends
the scenario immediately. The armor is located at the end of
a corridor, which is guarded by enemies on both sides. The
agent must kill most, if not all of the enemies to reach it, and
receives a -100 reward if it dies. The original reward shaping
function (the distance to the armor) has been removed to make
it harder and to compare RoE with a baselines that does not
use any reward shaping. The maximum episode length is 2,100
time steps.

Fig. 2: From top-left to bottom-right: Screenshot from Deathmatch, My Way
Home, Health Gathering Supreme, and Deadly Corridor. Notice that in some
scenarios the agent cannot shoot. The scenario Health Gathering is similar to
Health Gathering Supreme but without walls within the room.

5) Deathmatch: The agent spawns in a large battle arena
with an open area in the middle and four rooms, one in each
direction that contain either medkits and armor, or weapons
(chainsaw, super shotgun, chaingun, rocket launcher, and
plasma gun) and ammunition for each weapon. The maximum
episode length is 4,200 time steps. The agent is rewarded
the following amounts when killing an enemy: Zombieman

A2C
Learning rate 7e-4
γ (discount factor) 0.99
Entropy coefficient 0.01
Value loss coefficient 0.5
Learning rate 0.0007
Max. gradient-norm 0.5
Worker threads 4 (16 in DM)
tmax (Steps per. update) 20
Batch size 64
Frame skip 4

RMSprop Optimizer
ε 1e-5
α 0.99

RoE
N (event buffer size) 100
τ (mean threshold) 0.01

TABLE I: Experimental configurations for A2C and A2C+RoE. 16 worker
threads were used in Deathmatch.

(100), ShotgunGuy (300), MarineChainsawVzd (300), Demon
(300), ChaingunGuy (400), HellKnight (1,000). These enemies
spawn randomly on the map when the scenario starts.

To test how well the approach can adapt to new scenarios,
five variations of Deathmatch were also created that only
include a certain weapon type. These scenarios are called
Deathmatch Chainsaw, Deathmatch Chaingun, Deathmatch
Shotgun, Deathmatch Plasma, and Deathmatch Rocket to de-
note which weapon that remains on the map. The ammunition
for the other weapons was also removed.

V. RESULTS

We tested A2C with our approach Rarity of Events
(A2C+RoE) on the five VizDoom scenarios described in
Section IV. The Deathmatch variations were not used for
training. As a comparison baseline, A2C was also trained using
the extrinsic reward from the environment as described in
Section IV. Due to computational constraints we only trained
each method once on each scenario.

When training with A2C+RoE, the agent did not have
access to the extrinsic reward throughout training but only the
intrinsic reward based on the temporal rarity of the pre-defined
events. The algorithms ran for 107 time steps for each scenario
and 7.5×107 for the Deathmatch scenario. For both A2C and
A2C+RoE we save a copy of the model parameters whenever
the mean extrinsic reward across all workers improves. The
last copy is considered to be the final model that we use in
our tests. The complete configurations for A2C and A2C+RoE
are shown in Table I and the code for the experiments and
trained models are available on GitHub2. Videos of the learned
policies are available on YouTube3.

2https://github.com/njustesen/rarity-of-events
3https://youtu.be/YG-lf732a0U
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Fig. 3: The reward per episode of A2C and A2C+RoE during training in five VizDoom scenarios (smoothed). A2C is trained from the environment’s extrinsic
reward while A2C+RoE uses our proposed method without access to the reward. The drop in performance seen in the My Way Home scenario is discussed
in-depth in Section V-A.
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Fig. 4: Episodic mean occurrence during training for a subset of the event types in the five VizDoom scenarios. Notice the last spike in the My Way Home
scenario with A2C+RoE, in which the policy ignores the final goal (armor pickup) to prioritize continuous movement around the maze.

Scenario A2C A2C+RoE t-test
Health Gathering 399 ± 107 1261 ± 533 p < 0.0001
Health Gathering Supr. 305 ± 60 1427 ± 645 p < 0.0001
Deadly Corridor 0.00 ± 0.0 40 ± 49 p < 0.0001
My Way Home 96.69 ± 0.12 97.89 ± 0.01 p < 0.0001
Deathmatch 4611 ± 2595 4062 ± 2442 p = 0.1250
Deathmatch Chainsaw 1025 ± 809 3750 ± 3130 p < 0.0001
Deathmatch Chaingun 1487 ± 1189 2852 ± 2038 p < 0.0001
Deathmatch Shotgun 1375 ± 941 1832 ± 1752 p = 0.0226
Deathmatch Plasma 4538 ± 1537 3248 ± 2701 p < 0.0001
Deathmatch Rocket 616 ± 583 1463 ± 1449 p < 0.0001

TABLE II: Shown are average scores based on evaluating the best policies
found for A2C and A2C+RoE 100 times each. The best results are shown
in bold. The five last rows show how the policies that were trained on the
original Deathmatch scenario generalize to five variations where only one
weapon type is available. Standard deviations are shown for each experiment
and two-tailed p-values from unpaired t-tests.

A. Learned Policies

The A2C baseline did not learn a good policy in Health
Gathering Supreme and Deadly Corridor, and only improved
slightly in Health Gathering (Figure 3). A2C learned a weak

policy in three out of five scenarios, which demonstrates that
they are indeed difficult to master guided by the extrinsic
rewards alone. In My Way Home, A2C does learn a strong
behavior that consistently locates and picks up the armor
but only after 8–9 million training steps. In Deathmatch,
A2C learned a very high-performing behavior that directly
walks to the plasma gun (the most powerful weapon in this
scenario) and shoots from cover toward the center of the
map. The behavior is simple but effective until it runs out of
ammunition, after which it attempts to find more ammunition
and sometimes fails.

Our approach A2C+RoE learns effective behaviors in all
five scenarios. The learned behavior in Deathmatch does not
exclusively use the powerful plasma gun, which results in
a slightly but not significantly worse performance than A2C
(p = 0.125 using two-tailed t-test). The policy is still effective
with over 10 kills per episode. These kills are spread across
all weapons that are available, resulting in a behavior that
is more varied (and interesting to watch). As we will show
in Section V-B, the versatile behavior learned by A2C+RoE
allows it to adapt to critical changes in Deathmatch in contrast



to policies trained through A2C.
The episodic mean occurrence of events (Figure 4) allows

us to analyze how the policies change over time. In Health
Gathering and Health Gathering Supreme, A2C+RoE quickly
learns to move ∼80 and ∼30 units per episode, respectively.
This behavior might explain why the agent also quickly learns
to pick up medkits. A2C, on the other hand, learns the
relationship between movement, medkits, and survival at a
much slower pace, at least in the Health Gathering scenario. In
Deadly Corridor A2C+RoE discovers an interesting behavior.
After the agent learns to kill all six enemies (the red line) and
to pick up armor (purple line), it still manages to increase the
movement and the shooting events; the agent learned to walk
back to its initial position while shooting and then afterwards
to return to pick up the armor. This result is not unexpected
as the agent is intrinsically motivated to experience as many
events as possible during an episode.

In My Way Home, after the A2C+RoE policy has learned to
routinely pick up the armor, it shifts into a different behavior
toward the end of training. The agent learned to avoid the
armor to instead continuously move around in the maze.
We suspect that the policy would shift back to the previous
behavior if training was continued, as the movement reward is
now decreasing and the armor reward is increasing. Since our
rarity measure is temporal, loops between these two behaviors
could emerge as well. As policies with the highest extrinsic
reward are saved during training, these sudden changes do not
affect the final policy. In fact, one might argue that this is a
useful feature of RoE: a network that has converged to some
optimum can escape it to find other interesting behaviors.

B. Ability to Adapt

A2C+RoE motivates the agent intrinsically to learn a bal-
anced policy that strives to experience a good mix of events.
Reinforcement learning algorithms that exclude pre-training
or proper reward shaping, including our A2C baseline, can
easily converge into local optima with very narrow behaviors.
In this context, narrow refers to behaviors that act in a very
particular way, only utilizing a small subset of the features in
the environment. This handicap prevents the learned policies
from adapting to critical changes in the environment as they
only know one way of behaving.

To test for such adaptivity, the learned policies are evaluated
on five Deathmatch variations in which critical weapons and
ammunition packs have been removed. Note that the policies
were not directly trained on these variations. The results in
Table II show that A2C+RoE learned a policy that significantly
outperforms A2C (p < 0.0001 using two-tailed t-test) in four
out of five Deathmatch variations. A2C+RoE learned a policy
that is more versatile, capable of using all the weapons in
the map, which is the reason it can easily adapt. Figure 5
shows heat maps (i.e. the proportional time spent at each
map location) during the evaluations of the two policies on
Deathmatch and its variations. The A2C+RoE policy expresses
different strategies depending on the weapon available on the

map, while the A2C policy mostly circles around the plasma
gun location, regardless of it actually being there. However,
if the plasma gun is present, A2C alone does execute a fairly
effective strategy, shooting toward enemies in the middle of
the map.

The heat maps show that the A2C policy has learned to stay
at only one location on the map from which it can pick up the
powerful plasma gun and thereafter shoot efficiently toward
enemies in the middle of the map (see the video of the learned
policies). In the Deathmatch variations, in which the map only
contains two weapons of the same type, the A2C-policy fails
to adapt to use the other weapons and instead walks around
the area where the plasma gun would have been located.

The A2C+RoE policy has learned to explore a larger part
of the maps in a more uniform way (Figure 5,bottom). In the
different Deathmatch variations, a clear change in behavior can
be observed when only a certain type of weapon is available.
For example, in the DM Rocket scenario, the agent lures
enemies into the map’s top and bottom room while efficiently
using the rocket’s splash damage.

VI. DISCUSSION

While the presented approach worked well in VizDoom
it will be important to test its generality in other domains
in the future. RoE is designed to work well in challenging
environments that have a plethora of known events and sparse
and/or delayed rewards. Video games are thus a very suitable
domain and we plan to test RoE in Montezuma’s Revenge
and StarCraft in future work. For domains in which reward
shaping is not necessary, i.e. the extrinsic reward smoothly
leads to an optimal behavior, our approach might add less
value. We imagine that RoE should also work well in domains
with deceptive reward structures, just as novelty search out-
performed traditional evolutionary algorithms in mazes with
dead ends [24] or deceptive meta-learning tasks [37]. Novelty
search and RoE have the ability to learn interesting behaviors
without the need for a goal. In the future, our approach could
also be extended to reward the agent for both the rarity of
events as well as the environment’s original objective, inspired
by quality diversity methods [35] that use a combination of
diversity and objective-based search [10, 30].

The specification of adequate events is intimately tied to the
success of our approach; events that lead to direct negative
performance should be avoided. For example, if the extrinsic
reward is negative when the agent wastes ammunition, it
should not be intrinsically rewarded for shooting event. A
benefit of the presented method is that events that contribute to
the occurrence of other events (e.g. such as movement leads to
medkit pickups), can lead to a system that performs automated
curriculum learning. However, it is not guaranteed that this
effect will occur, and it might require a bit of trial and error
during the specification of events. Some events can also be
contradicting, such as killing with the chainsaw and killing
with the plasma gun, as the agent cannot do both at the same
time. Our approach is designed to learn a policy that can
balance their occurrences which results in a more versatile
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on evaluating the two trained policies 100 times each and clipped at 0.025. The heat maps show that the A2C-policy prefers to stay near the plasma gun,
even in the map variations where it is not present, while the A2C+RoE-policy has learned distinct behaviors for each weapon type. The results in Table II
shows that the A2C+RoE-policy is able to reach high scores in these variations event though it was never trained on them.

behavior. Important future work will test how RoE scales to
hundreds or even thousands of events. A promising testbed for
such experimentation is StarCraft, for which events can easily
be defined as the production of each unit and building type, as
well as killing different opposing unit types. We believe that
reinforcement learning methods that are guided by intrinsic
motivation are key to solving these challenging environments.

The A2C baseline reached the best performance in the
original Deathmatch. However, it can be argued whether it
learned to actually play Doom, or just learned to follow a
fixed sequence of actions that lead to the same behavior
every time. While it can be useful to find a niche behavior
with high performance, learning a rich and versatile behavior
has particular relevance for video games. Here, behaviors
that explore the game’s features could potentially help for
automatic game testing and also lead to more human-like
behaviors for NPCs.

Regarding our implementation of the RoE approach, future
work will also explore other variations in determining the
episodic mean occurrence of events, such as discounting the
mean occurrences over time. With this modification, event
occurrences older than N episodes (the event buffer only holds
N event occurrences) would still effect the intrinsic reward.

It is important to note that since we save the best model
based on the mean extrinsic reward across all worker threads,
increasing the number of threads should make the evaluation
less noisy by reducing the chances of accidentally overriding
the best model with a worse performing one. This hypothesis
still needs to be confirmed, but the number of threads was
already increased from 4 to 16 in the longer Deathmatch
scenario to speed up learning.

VII. CONCLUSION

We introduced Rarity of Events (RoE), a simple reinforce-
ment learning approach that determines reward based on the
temporal rarity of pre-defined events. This approach was able
to reach high-performing scores in five challenging VizDoom

scenarios with sparse and/or delayed rewards. Compared to a
traditional A2C baseline, the results are significantly better in
four of the five scenarios. Importantly, the presented approach
is able to not only receive a high final reward, but also
discovers versatile behavior that can adapt to critical changes
in the environment, which is challenging for the baseline
A2C approach. In our experiments, the extrinsically motivated
baseline either fails in these environments or learns a behavior
that is unable to adapt to changes in the environments it has
been trained on. In the future, the presented RoE approach
could allow more complex scenarios to be solved, for which
it is infeasible to learn from extrinsic rewards without manual
reward shaping and curriculum learning.
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