
Blood Bowl: A New Board Game Challenge
and Competition for AI

Niels Justesen
IT University of Copenhagen

Copenhagen, Denmark
noju@itu.dk

Peter David Moore
Sydney, Australia

peter.d.moore@gmail.com

Lasse Møller Uth
IT University of Copenhagen

Copenhagen, Denmark
laut@itu.dk

Julian Togelius
New York University

New York, USA
julian@togelius.com

Christopher Jakobsen
IT University of Copenhagen

Copenhagen, Denmark
chjak@itu.dk

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

Abstract—We propose the popular board game Blood Bowl
as a new challenge for Artificial Intelligence (AI). Blood Bowl
is a fully-observable, stochastic, turn-based, modern-style board
game with a grid-based game board. At first sight, the game
ought to be approachable by numerous game-playing algorithms.
However, as all pieces on the board belonging to a player can be
moved several times each turn, the turn-wise branching factor
becomes overwhelming for traditional algorithms. Additionally,
scoring points in the game is rare and difficult, which makes it
hard to design heuristics for search algorithms or apply rein-
forcement learning. We present the Fantasy Football AI (FFAI)
framework that implements the core rules of Blood Bowl and
includes a forward model, several OpenAI Gym environments for
reinforcement learning, competition functionalities, and a web
application that allows for human play. We also present Bot
Bowl I, the first AI competition that will use FFAI along with
baseline agents and preliminary reinforcement learning results.
Additionally, we present a wealth of opportunities for future AI
competitions based on FFAI.

I. INTRODUCTION

Games have proven to be important testbeds for Artificial
Intelligence (AI). In the last few years, deep reinforcement
learning has enabled computers to learn how to play games
such as Chess [14], Go [14], Atari games [11], and many other
games [9]. This advance has unfortunately led to a common
misconception that computers can now play all interesting
board games. In this paper, we propose the popular board
game Blood Bowl (Games Workshop, 1986) as the next grand
board game challenge for AI. The turn-wise branching factor
of Blood Bowl is several orders of magnitude larger than those
of classic board games, and our experiments have shown that a
random agent was unable to score any points in 350,000 Blood
Bowl matches, making it infeasible to apply vanilla reinforce-
ment learning. In retrospect, recent AI game challenges such
as Go and most Atari games are in fact particularly suitable
for deep reinforcement algorithms as they have image, or
image-like, observations as well as a fixed action space. Blood
Bowl does not have these properties, as observations consist
of both spatial and non-spatial information and the available
actions depend on the game state, similarly to the StarCraft II

Learning Environment (SC2LE) [19]. This paper additionally
presents the Fantasy Football AI (FFAI) framework, a Python
implementation of Blood Bowl with an API for scripted bots
and several OpenAI Gym environments, including scaled down
versions of Blood Bowl. We also describe a scripted Blood
Bowl bot called GrodBot and present preliminary results of
training a deep reinforcement learning agent in three smaller
variants of Blood Bowl. Additionally, this paper details plans
for several future AI competitions using FFAI. This paper is
a significantly extended version of a short paper that initial
proposed Blood Bowl as an AI challenge [7].

II. BLOOD BOWL

A. Game Overview

Blood Bowl is a board game designed by Jervis Johnson
in 1986 and published by Games Workshop. It is a so-called
fantasy football game (not to be confused with the American
football manager games) that is played on a board of 26× 15
squares mimicking a football / rugby-like pitch (Figure 1). Two
players each control a team of miniatures and the goal is to
score the most touchdowns. We will refer to players as coaches
(or sometimes teams in a traditional sports-like manner) and
the miniatures on the board as players. Each coach can field 11
players on the board whereafter coaches take turns to move all
their players. Players can either move, pass, hand-off, block
(attempt to knock down opposing players), blitz (move and
block) or foul (stomp on down players) during their player
turn. When the ball carrier reaches the opponent’s end zone
their team/coach scores a point.

B. Game Rules

The rules of Blood Bowl have gone through major al-
terations since the first release in 1986, especially in the
2nd edition (1988), and 3rd edition (1994), whereafter the
rules were periodically updated by the Blood Bowl Rules
Committee (2002-2009) resulting in the Living Rulebook 6
(LRB6) [4]. The 2016 Edition of Blood Bowl came with a new
ruleset very similar to LRB6. This paper will at all times refer



to the rules in the LRB6 as they have been distributed online
for free by Games Workshop and are thus easy to obtain.

An important concept in Blood Bowl that plays a role in
most aspects of the game is the tackle zone. A player’s tackle
zone consists of the eight surrounding squares in which it
is risky for opponent players to perform actions. Examples
of the effects of tackle zones are shown in Figure 2. Many
coaches make use of the famous Cage formation, wherein the
ball carrier is surrounded by team-mates, usually positioned
on the diagonally adjacent squares, such that any opponent
trying to block the ball carrier has to make a hard Dodge
roll. Players that are prone, hypnotized, etc. do not have a
tackle zone. Another important concept is that players can get
knocked down either as a result of a block or a failed move near
opponent players. When a player is knocked down, an armor
roll is typically required: two 6-sided dice (D6) are rolled,
and if the result is higher than the player’s Armor Value (AV)
attribute its armor is broken. If this occurs, an injury roll is
made to determine if the player is stunned (becomes prone and
inactive for one turn), knocked out of the game (may return
at next kickoff), or injured/dead (will not return).

1) Turns: A game of Blood Bowl is separated into two
halves, each with eight turns for each coach alternating back
and forth. The game starts with a kick-off, where each coach
sets up a maximum of eleven players on their respective
halves of the pitch and the kicking team places the ball on
the receiving team’s half. Hereafter, the receiving team’s turn
starts. Within a turn, each player on the team, that is not
stunned, can take one of six player actions: Move, Pass, Hand-
off, Block (attempt to knock down opposing players), Blitz
(move and block), or Foul (stomp on prone players). If a player
at any point stands in the opponent’s endzone with the ball,
it is a touchdown; the scoring team scores one point and both
teams must set up for kick-off again. When there are no more
turns in the first half, each team similarly sets up again for
kick-off. When the second half is over, the team with the most
touchdowns wins, or if it is a tie, the game ends in a draw. A
critical rule in Blood Bowl is the turnover rule. If any player
fails a dice roll, such that the acting player falls over, fails to
pick up, or catch the ball, the coach’s turn ends immediately.

2) Setup: Before each kickoff, the kicking/defending team
first sets up a maximum of eleven players on their half of
the pitch. It often happens that a coach cannot field eleven
players because of injuries. Besides the maximum number of
players on the pitch, there must be a maximum of two players
on each wing and a minimum of three players on the line of
scrimmage. An example of a defensive zone formation (the
blue team) and an offensive wing formation (the red team)
is shown in Figure 1. Notice that the offensive team has
one player positioned to get the kicked ball in the backfield.
Coaches usually have their own repertoire of formations that
are tailored to their strategy and playing style.

3) Movement and Dodging: Moving players into positions
that give tactical advantage is perhaps the most important part
of Blood Bowl. Unless a player is stunned or takes a block
action, it is allowed to move a number of squares equal to its

Fig. 1: The game board in FFAI after both teams have set up. The blue team
just kicked the ball to the red team and assumed a defensive cover formation,
while the red team is in an offensive wedge formation, protecting the wings
against blitzing opponents.

(a) (b) (c)

Fig. 2: Effects of tackle zones on different dice rolls visualized in FFAI. (a)
The red Lineman can block one of two blue Linemen. When blocking the
top-most blue Lineman, two block dice are used due to the two assisting
red Blitzers in the top, while it only gets one block die when blocking the
bottom-most Lineman. (b) The red Catcher can move to seven adjacent free
squares. Since it is already in a blue player’s tackle zone, a Dodge roll is
required. The player has AG = 3, which makes the dodge successful on a
roll of 3+. However, this number is increased by one for each opponent tackle
zone covering the target square. (c) A red human Thrower can attempt to pass
the ball to four nearby team-mates. Two of these team-mates are in the quick
pass range where a pass will be accurate on a roll of 3+ while the other two
are in the short pass range requiring a roll of 4+. If the pass is accurate, the
ball can be caught on 3+ with an additional modifier for each opponent tackle
zone covering the catching player. Note that (b) and (c) show the required
dice rolls after modifiers have been added.

Movement Allowance (MA) attribute. For example, a Halfling
can only move five squares while a Wood Elf Catcher can
move eight squares. To move from a square that is within
an opponent tackle zone, a player has to pass a Dodge roll
that depends on its Agility (AG) attribute (thus also called
an Agility roll). The higher the agility, the higher the chance
is for the roll to succeed. Moving from an opponent tackle
zone into other opponent tackle zones add further modifiers
to the roll. An example of a tough dodging situation for a red
Catcher is shown in Figure 2b. Also, notice in Figure 1 how
the defending blue team has positioned itself such that the
red team cannot easily run through its cover defense. When
a player has moved the number of squares equal to its MA,
it has the option to make up to two risky Going For It (GFI)
moves, allowing the player to move an additional square on
a roll of 2 or more. Players that fail a dodge or GFI roll are
knocked down. If a player moves to a square with a ball an
Agility roll must be made to attempt to pick it up.

4) Blocking, Blitzing and Fouling: Another important part
of Blood Bowl is blocking. In fact, some coaches focus more
on blocking, attempting to knock out opponent players, than



worrying about the ball. A player taking the Block action
can perform a block on an adjacent standing opponent. If
the two players have the same value in their Strength (ST)
attribute, one block die is rolled. If one player is stronger than
the other, two (and sometimes three) block dice are rolled,
whereafter the stronger player’s coach must choose one of the
rolled dice to take effect. A block die has six sides with the
following outcomes: 1) Attacker Down: the attacking player
is knocked down, 2) Both Down: both players are knocked
down unless they have the Block skill, 3-4) Push: a player is
pushed one square back, 5) Defender Stumbles: the defender
is pushed and knocked down unless it has the Dodge skill. 6)
Defender Down: the defender is pushed and knocked down.
A player on the blocking team can assist the block if it inside
blocked player’s tackle zone but not in any other tackle zones
of the blocked player’s team. Likewise, an opponent player can
assist the blocked player if it is within the blocking player’s
tackle zone but not in any other tackle zone of the blocking
player’s team. Each assist on each side adds one to the attacker
or defenders ST. Figure 2a shows an example where a red
lineman can get two assists by blocking the top-most blue
lineman while the opponent gets a single assist, resulting in
two block dice. One Blitz action can be taken each turn, which
corresponds to a Move action wherein the player can perform
one Block action. Similarly, one Foul action can be made each
turn which consists of a Move action followed by a foul. A
foul (kicking a player that is down) can only be done to prone
players and do not require a block roll. Instead, an armor roll
and eventually an injury roll is made directly where assists are
applied to modify the armor roll. However, kicking players
that are down is strictly against the rules, and thus if either
the armor roll or the injury roll is doubles the referee spots
the foul and sends the fouling player out of the game.

5) Passing and Hand-offs: A player taking the Pass action
can first move as if it was a Move action and thereafter pass the
ball. A pass consists of three parts. First, the passer declares
a target square. Then the opponent coach declares a player
that stands between the passer and the target (if any) who will
attempt to intercept the ball. Interceptions are hard and require
an Agility roll with additional modifiers. If the interception
is successful, the intercepting player catches the ball and its
a turnover. If not, the passer must make an Agility roll that
depends on the range to the target and the number of opponent
tackle zones the passer is in. If that fails, the ball is either
fumbled to a nearby square or becomes inaccurate and is
scattered three random squares from the target. Otherwise, the
ball lands on the target square. If there is a player on the square
the ball lands on, that player must finally attempt to catch it by
passing an Agility roll. If the pass does not result in a catch by
a team-mate it is a turnover. An example of a pass situation is
shown in Figure 2c where both the Agility roll for passing and
catching is shown for each friendly player. A Hand-off action
is similar to a Pass action with a few differences. The ball
can only be “passed” to an adjacent square with a team-mate,
the “pass” is always accurate, and it cannot be intercepted.
A maximum of one pass and one hand-off actions can be

Qty Title MA ST AG AV Skills
0-16 Linemen 6 3 3 8
0-4 Catchers 8 2 3 7 Dodge, Catch
0-2 Throwers 6 3 3 8 Sure Hands, Pass
0-4 Blitzers 7 3 3 8 Block
0-1 Ogre 6 5 2 9 Loner, Bone-head, Mighty Blow

Thick Skull, Throw Team-Mate

TABLE I: The positional players allowed on a Human team. MA=Movement
Allowance, ST=Strength, AG=Agility, AV=Armour value. The Ogre is a
special type of player called Big Guys and its skills are not explained in
this paper.

performed each turn.
6) Teams and Races: The board game Blood Bowl comes

with two teams: the Humans and the Orcs. The Human team
does not have any particular strengths nor weaknesses while
the Orcs are stronger, have more armor, are slower, and less
agile. Each team can be built from a restricted set of positional
players (different types of players) with different attributes
and skills; any Human team can have up to 16 Linemen, 4
Catchers, 2 Throwers, 4 Blitzers, and 1 Ogre. Table I shows
each positional player’s attributes and skills. There are 24
teams in LRB6, all with their own strengths and weaknesses.
In competitive play, teams are built starting with a treasury of
1 million or 1.1 million gold coins, whereafter the roster is
created by buying from the available positional players.

C. Competitive Play

Blood Bowl is very popular among competitive tabletop
gamers with 161,080 recorded tabletop tournament matches
registered by NAF1, the international association of Blood
Bowl coaches and organizers of the Blood Bowl world cup.
NAF also maintains the ranking of competitive Blood Bowl
coaches based on their participation in tournaments2. Not all
teams are balanced to be equally good. For example, the
Undead team has the record low loss rate of 31.9% and the
Ogres team has the highest loss rate of 58.6%.

Blood Bowl is also played competitively in leagues where
players (the miniatures) are rewarded experience points for
completing passes, scoring touchdowns, and causing casual-
ties. Players can then level up when enough experience points
are reached, resulting in new skills or attribute increases. Play-
ers can also gain permanent injuries that reduce their value.
The coach can in-between matches decide to fire old players
and hire new players. A team thus progresses throughout a
league, making each league match a unique experience.

A video game adaptation with 3D graphics was released
by Cyanide Studios in 2009 which features online play. The
video game includes an AI which is far from human-level; it
presumably follows a set of scripted rules combined with a
pathfinding algorithm. FUMBBL (the acronym combines the
football term Fumble with BBL; Blood Bowl League) is a
community-driven online league with more than 2,500,000
recorded matches3. Matches in FUMBBL are played using an

1http://naf.talkfantasyfootball.org/total_for_all_competitions.html
2https://www.thenaf.net/rankings/glicko-rankings/
3https://fumbbl.com/p/stats



unofficial game client with simple 2D graphics4. The source
code is kept secret by the developers to prevent cheating.

D. Game Variants

Blood Bowl has several variants using extensions of the
core rules5. Dungeon Bowl (Games Workshop, 1988) is, as
the name suggests, Blood Bowl in a dungeon. There are no
fixed rules on the structure of this dungeon, only that it is grid-
based, has setup zones and endzones for each team. The rules
also include trapped chests, teleporters, lava pits, monsters, etc.
that makes every game unique. Other variants exist, such as
Death Bowl that allows four teams to play on a cross-shaped
pitch with two balls. Street Bowl, Blood Bowl Sevens, Blitz
Bowl are smaller variants of Blood Bowl, with a smaller game
board and fewer players.

E. Characteristics

This section contains a short analysis of Blood Bowl using
the game characteristic dimensions defined by Yannakakis and
Togelius [20]. These dimensions include observability (perfect
or non-perfect information), stochasticity (deterministic or
stochastic), and time granularity (turn-based or real-time).
Additionally, we consider at the state representation.

Blood Bowl has perfect information as the board state is
fully observable and coaches have no hidden information. The
game has an optional rule that allows coaches to have secret
special play cards but these are rarely used in competitions.

Blood Bowl is stochastic as most of the interesting actions
require dice rolls to succeed. Coaches have a limited number of
re-roll tokens they can use to re-roll a failed roll. Experienced
Blood Bowl coaches usually start their turn with safe actions
that require easy or no dice rolls and postpone risky actions
to the end of their turn.

Blood Bowl is a turn-based and a multi-action game as
coaches take turns to move multiple players on the board.
Other multi-action games that have been the basis for research
on AI methods are Arimaa [16] and Hero Academy (Robot
Entertainment, 2012) [6]. What makes Blood Bowl even more
complicated than these is that players can be moved several
steps each turn, making it a nested multi-action game. A turn
consists of multiple player actions which consists of multiple
individual actions. Blood Bowl can be played with a maximum
time limit for each turn, usually of two to four minutes per
turn, and is sometimes enforced in competitive play.

The state representation is especially relevant for deep
learning methods. Go and most Atari games are particularly
suitable for deep learning methods as they have an image,
or image-like, state representation as well as a fixed action
space, which is not the case for Blood Bowl. Here, the state
is represented by players on the board, each with multiple
dimensions (player attributes, whether it is standing, knocked
down etc.), a dugout for both coaches with reserve, knocked
out, and injured players, weather conditions, and occasionally
information on a dice roll, etc. The state representation thus

4https://fumbbl.com/
5https://www.thenaf.net/blood-bowl/variants/

consists of both multi-layered spatial features and non-spatial
features very similar to SC2LE [19]. Another similarity shared
with SC2LE is that the action space varies between steps.

F. Complexity

To get a grasp of the complexity of Blood Bowl we will
first attempt to estimate the branching factor analytically and
then empirically measure it relative to the game-play of two
baseline agents in FFAI.

The size of the action space in Blood Bowl depends on the
state and varies between 1 and 395. Sometimes the coach has
to select between a few dice results and other times one of the
395 squares on the board to kick or pass the ball to. In most
situations, the coach has to select one of up to eight adjacent
squares to move a player to or select one of six different action
types for a player. A reasonable estimation of the average step-
wise branching factor is 10 and the average number of steps
in a complete player action could be around 5. The number
of unique action sequences for just one player action is thus
105. With 10 players able to take actions in a fixed order,
the average turn-wise branching factor is 105×10 = 1050.
As players can take actions any order, this is a lower-bound
estimate. In comparison, the turn-wise branching factor is
around 30 in Chess and 300 in Go. Long action sequences with
sparse scores make both search algorithms and reinforcement
learning harder to apply. A game of Blood Bowl consists of
approximately 10 × 5 × 32 = 1600 steps, using the previous
estimations multiplied by 32 turns.

We performed an experiment in FFAI, simulating 100 games
with two agents that samples actions uniformly. 169.8 actions
were taken on average by each agent (10.6 actions per turn)
with a step-wise branching factor of 29.8. This gives us a
turn-wise branching factor of around 1030. Randomly sampled
actions are not representative for human play and we thus also
performed an experiment with the scripted bot GrodBot (which
will be described in Section IV-B). However, this experiment
only includes 10 games because GrodBot runs much slower
than the random bot. Here, the measured average step-wise
branching factor was 17.2 with 41.6 actions per turn and thus
the turn-wise branching factor is around 1742 = 4.8× 1051.

The branching factor was estimated for one setup of Blood
Bowl with two simple Human teams while the game has
many possible setups; a coach can choose among 24 races
to play and has the option to customize the roster. Especially
in leagues, it is typical to play against a team with a unique
combination of players that the coach has never encountered
before, which contrasts sharply with classic board games that
have just one or a few initial game states. We describe these
different setups in more details in Section VI-B.

G. Motivation

There are several motivations for proposing Blood Bowl
as a new AI challenge. First of all, Blood Bowl is, due
to its high complexity, significantly harder for AIs to play
than classic board games. Having a hard task that is focused
on tactical planning, long-term planning, and careful risk



management, without dealing with the array of challenges in
real-time video games, is of high value. We can effectively do
research on an environment that is fast, easy modifiable and
lies somewhere in the large gap between Go and StarCraft
in terms of complexity. Exploring video games, which are
more similar to real-world problems, are obviously very useful
to use as AI test beds. However, by staying in the realm of
board games, it is easier to compare the cognitive level of AI
systems to humans, which has been argued to be impossible
in video games [2]. Another main motivation for proposing
Blood Bowl is its expressiveness. Every game of Blood Bowl
is never the same. Not only because it quickly branches out
to new situations, but because the number of possible initial
board states is astronomical, taking into account the number
of permutations of players on each of the 24 teams and the
relatively non-restricted freedom to set up the players on the
board. Additionally, Dungeon bowl introduces the possibility
of playing in new and unseen dungeons. These challenges are
not in classic board games.

III. GAME ENGINE

Existing Blood Bowl implementations are closed source and
do not have an AI interface. Thus, we have developed our own
game engine named the Fantasy Football AI (FFAI) client6.
Figure 1 shows a screenshot of a part of the user interface
in FFAI with our own 2D graphics7. FFAI is implemented
in Python allowing a simple way to interface with popular
machine learning libraries. We considered implementing the
engine in C++ with a Python interface on top, but the state
updates in Blood Bowl are fairly simple, and thus fast, even
in Python. FFAI implements the Open AI Gym interface
for reinforcement learning algorithms [1]. The observation
object includes several spatial feature layers as well as several
non-spatial features. Aside from the reinforcement learning
interface, the engine itself can be used as a forward model. One
game step with a randomly sampled action takes on average
0.9ms on a regular laptop and a complete game takes on
average 0.16s. While the forward model is rather fast itself,
the game state object is object-oriented and thus slow to clone.
Tree search is possible, but not very feasible using the current
data structure. A simpler array-based data structure could be
implemented for this paper while it would complicate the game
logic. FFAI also comes with a simple web application that
implements a user interface for humans to play against other
humans, online or local, or against bots.

A. Competition Functionalities

To support AI competitions, FFAI comes with built-in
functionalities to handle a sequence of games between two
bots, restricting and penalizing hanging or crashing bots. FFAI
can be configured with time limits for a complete turn, a single
action taking place in the opponent’s turn (such as block die
selection or skill usage - we refer to this as an opponent
procedure), initialization, and termination procedures. The

6https://github.com/njustesen/ffai
7Nicholas Kelsch has the copyright to the player icons.

game waits for the acting agent to return an action whereafter
it can be penalized in several ways:

• Delay of Game: the acting agent fails to end its turn, or
returns an action during an opponent procedure, within
the time limit. If a Delay of Game penalty occurs, actions
are randomly taken by the system until the turn or
opponent procedure ends.

• No Response: if there is a Delay of Game and the agent
responded later than a specified disqualification threshold,
it will be disqualified directly.

• Crash: if the acting agent crashed, it will be disqualified
directly. In the unexpected case that FFAI crashed during
an internal procedure, the game will end in draw.

FFAI also saves a report of the competition with aggregated
results and a list of individual game results.

B. Replays

We are currently working on a module for FFAI to replay
matches from FUMBBL. This would enable us to extract
state and action pairs from the 2,500,000 available FUMBBL
matches which can be used for imitation learning. Here, the
goal is to learn a policy function that maps states to actions
using traditional supervised learning techniques, thus imitating
a the playing styles expressed in the dataset. This technique
has been applied to several games, including StarCraft [5],
and Candy Crush Saga [3]. Currently, individual replays can
be fetched from the FUMBBL API. However, this process is
slow and we are thus planning to release publicly available
data sets in the future.

IV. BASELINE AGENTS

A. Random Agent

FFAI comes with an agent that samples actions from a
uniform distribution. To be more precise, it first samples a
legal action type uniformly and if that action type requires a
position as well, such as a movement action, a legal position
is sampled uniformly as well. When setting up, it randomly
selects between two predefined formations on the offense
and two on the defense. In 350,000 games against itself,
no touchdowns were scored and thus all games ended in a
draw. Games in which random agents practically never score
points or wins are extremely challenging for many algorithms
such as Monte Carlo Tree Search and Q-learning as they
rely on random exploration. Thus, we do not expect vanilla
implementations of such algorithms to score any points either.

B. GrodBot

GrodBot8 is a scripted bot with an estimated skill level
slightly higher than a rookie player. GrodBot repeatedly eval-
uates all possible moves for all players. The move with the
highest score is then executed at each step in the game. The
end turn action is always assigned a score of zero so that
the turn will be passed when no positive actions are left.
The scoring of moves first applies pathfinding to identify

8https://github.com/njustesen/ffai/blob/master/examples/grodbot.py



the set of possible squares a player can reach along with
a probability of success for moving there. The probability
of successfully moving to each reachable square is thus the
maximum probability of all possible paths leading to it; we
always follow the optimal path. GrodBot maintains a list of
possible purposes, their values, and some rules that apply
modifiers to the values (e.g. it is preferred to pass the ball to
an unused team-mate close to the end-zone rather than a used
team-mate in the backfield). The final score for a move is then
computed by multiplying the probability of success with the
modified value of the move. Each purpose was initially valued
using an experienced Blood Bowl player’s intuition whereafter
it was gradually improved by playing GrodBot against itself
and tune the values in an ad-hoc manner. GrodBot’s move
purposes are:

• Move to a receiving position
• Move to the ball
• Move to a player holding the ball somewhere safe or

towards the end zone
• Move to a player to form a defensive sweep position
• Move to a player to form a defensive screening position
• Move to a player to form an offensive screening position
• Move to a player to form a cage around the ball
• Move to a player to exert an opponent tackle zone
• Foul an opponent on the ground
• Blitz an opponent (preferably the ball carrier)
• Hand-off the ball to a team-mate
• Pass the ball to a team-mate
• Block an adjacent opponent using two block dice

The probability of a successful move in Blood Bowl de-
pends on a number of different factors, such as the number
of tackle zones it moves trough, or whether or not the player
needs to attempt a GFI. We do not believe there is a useful
admissible heuristic for path finding in Blood Bowl and we
therefore apply Dijkstra’s algorithm. The cost function is
probability-based in the interval [0,1] and is not additive. For
sequences of moves, their costs are simply multiplied. In gen-
eral, if C({s1, s2}) is the cost of the path going from square
s1 to square s2 and the following cost of going from s2 to s3
is C({s2, s3}), then the total cost of the path from s1 to s3 is
C({s1, s2, s3}) = 1− (1−C({s1, s2}))× (1−C({s2, s3})).
The probabilities of success are multiplied and subtract from
1 to convert them back to the probability of failure, i.e. the
cos). GrodBot’s path-finding functionality has become a part
of FFAI and can easily be used by other bots.

We tested GrodBot in ten games against the random baseline
(five as the away team and five as the home team) where
both agents controlled the basic human team. Grodbot won all
ten games with an average of 4.2 touchdowns and 1 inflicted
casualty a game. The random agent scores 0 touchdowns and
had 0.6 inflicted casualties per game. The number of inflicted
causalities also include casualties inflicted by the crowed,
failed dodges, etc.

Fig. 3: The 28 spatial feature layers in the FFAI Gym observation. Each layer
has a name, which is shown above the visualization. Here, black squares
represent a value of 1 and white squares represent a value of 0.

V. FFAI GYM

A. The Gym Interface

OpenAI Gym is a toolkit for developing and comparing
reinforcement learning algorithms by implementing a simple
interface to handle communication between the agent and the
environment [1]. FFAI comes with several Gym environments,
one with the original game board and 11 players on each side
and several smaller variants (see Figure 4). In these environ-
ments, the agent faces the random agent (see Section IV-A),
which probably will lead to sub-optimal behaviors against
stronger agents. It is, however, easy to modify the FFAI Gym
implementation to e.g. support self-play, which is an effective
learning method in two-player board games [15]. Both agents
control a basic Human team, but this can also be modified
easily. For simplicity, the agent always plays as the home
team, playing on the right side of the field. This limitation
can easily be resolved after training by simply flipping the
board and swapping a few values in the observations, if it has
to play as the away team.

The observation space is split into three parts; (1) a vector
containing 50 non-spatial normalized values representing the
score, turn number, half, re-rolls left, etc. (2) a one-hot
encoded vector representing the procedure (phase) the game is
in, e.g. Setup, Turn, PlayerAction, and Push, and (3) a set of
2D feature layers, each with one value per square on the board
such as whether a square is occupied by the ball or by a player
controlled by the agent or the opponent. All 28 features layers
can be seen in Figure 3 for the same game state. The design
of the observation space is very similar to that of SC2LE [19]
as it also has spatial and non-spatial components.



(a) (b) (c)

A2C

Endzone basline

Random basline

Fig. 4: Touchdowns per episode of A2C during training in the three smallest FFAI Gym environments: (a) FFAI-1-v1, (b) FFAI-1-v3, and (c) FFAI-1-v5,
which features 1, 3, and 5 players on the pitch for each team. Simple renderings of each environment is shown above the plots. The agent plays against an
agent that takes random actions. The touchdowns are smoothed over 200,000 steps. The red and green lines show the touchdowns per episode the Random
and Endzone baselines. We see that A2C learns a policy that is better that the baselines in all three envrionments.

The action space has two parts: (1) the type of the action to
perform among 31 choices such as Block, Select Both Down
(block dice result), Use Reroll, Heads (for the coin toss), etc.,
and (2) a position, which is only relevant for some action types,
e.g. a Block action requires a position to determine which
opponent player to block.

The built-in reward function only gives a reward of 1 when
winning the game, −1 when losing, and 0 otherwise. The
complete game state is, however, accessible in the environment
to allow for reward shaping.

B. Preliminary Results with A2C

We applied the deep reinforcement learning algorithm
synchronous advantage actor-critic [12] (A2C) on the three
smallest/easiest Gym environments in FFAI, which has a board
of 4× 3, 12× 5, and 16× 9 squares with 1, 3, and 5 fielded
players on each team, respectively (see Figure 4). On the two
smaller environments, we used only touchdowns as rewards.
However, on the larger one, touchdowns are rarely obtained,
and thus the following reward shaping was used (rewards are
shown in brackets): winning (5), touchdown (4), knock out
opponent (3), push opponent into the crowd (3), completion
(3), cause opponent fumble (2), knock down opponent (2),
handoff (2), opponent failing a dodge (1), moving ball carrier
closer to the opponent endzone (1), and gaining the ball (1).

We use a convolutional neural network with an additional
fully-connected input stream to handle the non-spatial features.
We use all the 28 spatial feature layers from FFAI for the
convolutional input stream and all the 50 non-spatial features
(in the current version of FFAI there are now 50 non-spatial
features) for the fully-connected input stream. The convo-
lutional stream has two layers, one with 16 filters of size
3 × 3 (mimicking the tackle zone area around a player), and
a second layer with 32 filters of size 2 × 2. Both layers use
stride 1 and padding, preserving the spatial structure of the

observation. The non-spatial input stream consists of a single
fully connected layer of size 25 which is concatenated with
the flattened convolutional stream followed by a single fully-
connected layer and two output streams for the critic and the
policy. When actions are sampled from the policy distribution,
we use a masking technique to filter out illegal actions before
applying softmax.

A2C was configured to use eight parallel workers, a learning
rate of 0.001, a discount factor γ = 0.99, entropy coefficient of
0.01, value loss coefficient of 0.5, max. gradient normalization
of 0.5, and steps per update tmax = 10. We used the RMSprop
optimizer [17] with ε = 1e-8 and α = 0.99. Figure 4
shows the touchdowns per episode during training, where it
reached an average around 8/5/3 in the three environments. A
random baseline agent scores around 0.2/0.0/0.0 touchdowns
per episode, and a simple endzone baseline that always goes
toward the endzone with the ball scores around 1.8/0.9/1.3
touchdowns/episode. The code is made available online9.
When observing the trained agents play10 we can see that it
plays quite well but not optimal.

VI. AI COMPETITION

A. Bot Bowl I

Based on our analysis of Blood Bowl we believe it can offer
a new and exciting testbed for AI due to the high complexity of
the game while still resembling many classic board games. To
encourage researchers and hobbyists to explore algorithms that
can play Blood Bowl, we are planning to organize an annual
AI competition with progressively more difficult challenges
using FFAI. The first competition, Bot Bowl I11, will be held

9https://github.com/lasseuth1/blood_bowl2/
10https://youtu.be/xk4AMutyuaA & https://youtu.be/7xmwB8hn3qM
11https://bot-bowl.com/



at the IEEE Conference on Games in August 2019. The com-
petition will allow all types of methods, including controllers
that are scripted, search-based, neural network-based, as well
as hybrids combining several of these approaches. Bot Bowl I
will only allow a pre-fixed Human team, to keep the format of
the first competition simple. The submitted agents will play in
a round-robin tournament with several matches against each
other and the two best agents (with the most wins) will play
in a final, also consisting of several matches.

B. Future Competition Formats

Future competitions can be extended in several exciting
directions that will add further challenges for the competitors.
Four concrete ideas are:

• All teams: The most obvious extension of the current
competition format is to allow all teams. This addition
will require a higher flexibility with less hard-coded
strategies and formations.

• Custom rosters: To align our competition format with
real Blood Bowl tournaments, competitors should be
allowed to buy players for their roster from a starting
treasury. As agents need to generalize to possibly unseen
teams, it will further require agents to rely less on hard-
coded strategies.

• League format: In Blood Bowl leagues, players get star
player points and can gain new skills when leveling up
between games. Additionally, players can get permanent
injuries. This format thus adds a meta-game, as agents
must manage their team in-between games, selecting new
skills when players level up, hire new players, etc.

• Dungeon Bowl: Instead of playing on the same board,
competitions could be played on procedurally generated
dungeons using the official Dungeon Bowl rules while
building on the numerous algorithms for dungeon gen-
eration in the procedural content generation literature
[10, 13, 18]. By playing on procedurally generated unseen
dungeons in the competition, agents need to either use
extensive forward search or learn a policy on a vast
training set of dungeons in a similar fashion to [8].

These four suggestions for future competitions add new
challenges that all require agents to generalize to new game
configurations, something that current reinforcement learning
algorithms struggle with.
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