
1

Deep Learning for Video Game Playing

Niels Justesen1, Philip Bontrager2, Julian Togelius2, Sebastian Risi1
1IT University of Copenhagen, Copenhagen

2New York University, New York

In this article, we review recent Deep Learning advances in
the context of how they have been applied to play different types
of video games such as first-person shooters, arcade games, and
real-time strategy games. We analyze the unique requirements
that different game genres pose to a deep learning system and
highlight important open challenges in the context of applying
these machine learning methods to video games, such as general
game playing, dealing with extremely large decision spaces and
sparse rewards.

I. INTRODUCTION

Applying AI techniques to games is now an established
research field with multiple conferences and dedicated jour-
nals. In this article, we review recent advances in deep
learning for video game playing and employed game research
platforms while highlighting important open challenges. Our
motivation for writing this article is to review the field from
the perspective of different types of games, the challenges they
pose for deep learning, and how deep learning can be used to
play these games. A variety of review articles on deep learning
exists [39], [81], [126], as well as surveys on reinforcement
learning [142] and deep reinforcement learning [87], here we
focus on these techniques applied to video game playing.

In particular, in this article, we focus on game problems and
environments that have been used extensively for DL-based
Game AI, such as Atari/ALE, Doom, Minecraft, StarCraft, and
car racing. Additionally, we review existing work and point
out important challenges that remain to be solved. We are
interested in approaches that aim to play a particular video
game well (in contrast to board games such as Go, etc.), from
pixels or feature vectors, without an existing forward model.
Several game genres are analyzed to point out the many and
diverse challenges they pose to human and machine players.

It is important to note that there are many uses of AI in
and for games that are not covered in this article; Game AI
is a large and diverse field [171], [170], [93], [38], [99]. This
article is focused on deep learning methods for playing video
games well, while there is plenty of research on playing games
in a believable, entertaining or human-like manner [59]. AI
is also used for modeling players’ behavior, experience or
preferences [169], or generating game content such as levels,
textures or rules [130]. Deep learning is far from the only
AI method used in games. Other prominent methods include
Monte Carlo Tree Search [18] and evolutionary computa-
tion [115], [90]. In what follows, it is important to be aware
of the limitations of the scope of this article.

The paper is structured as follows: The next section gives an
overview of different deep learning methods applied to games,
followed by the different research platforms that are currently
in use. Section IV reviews the use of DL methods in different
video game types and Section V gives a historical overview

of the field. We conclude the paper by pointing out important
open challenges in Section VI and a conclusion in Section VII.

II. DEEP LEARNING IN GAMES OVERVIEW

This section gives a brief overview of neural networks and
machine learning in the context of games. First, we describe
common neural network architectures followed by an overview
of the three main categories of machine learning tasks: su-
pervised learning, unsupervised learning, and reinforcement
learning. Approaches in these categories are typically based on
gradient-descent optimization. We also highlight evolutionary
approaches as well as a few examples of hybrid approaches
that combine several optimization techniques.

A. Neural Network Models

Artificial neural networks (ANNs) are general purpose func-
tions that are defined by their network structure and the weight
of each graph edge. Because of their generality and ability
to approximate any continuous real-valued function (given
enough parameters), they have been applied to a variety of
tasks, including video game playing. The architectures of these
ANNs can roughly be divided into two major categories: feed-
forward and recurrent neural networks (RNN). Feedforward
networks take a single input, for example, a representation
of the game state, and outputs probabilities or values for each
possible action. Convolutional neural networks (CNN) consists
of trainable filters and is suitable for processing image data
such as pixels from a video game screen.

RNNs are typically applied to time series data, in which the
output of the network can depend on the network’s activation
from previous time-steps [165], [82]. The training process is
similar to feedforward networks, except that the network’s
previous hidden state is fed back into the network together
with the next input. This allows the network to become
context-aware by memorizing the previous activations, which
is useful when a single observation from a game does not
represent the complete game state. For video game playing, it
is common to use a stack of convolutional layers followed by
recurrent layers and fully-connected feed-forward layers.

The following sections will give a brief overview of dif-
ferent optimization methods which are commonly used for
learning game-playing behaviors with deep neural networks.
These methods search for the optimal set of parameters to
solve some problem. Optimization can also be used to find
hyper-parameters, such as network architecture and learning
parameters, and is well studied within deep learning [13], [12].

ar
X

iv
:1

70
8.

07
90

2v
3

 [
cs

.A
I]

 1
8

Fe
b

20
19

2

B. Optimizing Neural Networks

1) Supervised Learning

In supervised learning a model is trained from examples.
During training, the model is asked to make a decision for
which the correct answer is known. The error, i.e. difference
between the provided answer and the ground truth, is used as
a loss to update the model. The goal is to achieve a model that
can generalize beyond the training data and thus perform well
on examples it has never seen before. Large data sets usually
improve the model’s ability to generalize.

In games, this data can come from play traces [16] (i.e.
humans playing through the game while being recorded),
allowing the agent to learn the mapping from the input state to
output actions based on what actions the human performed in a
given state. If the game is already solved by another algorithm,
it can be used to generate training data, which is useful if the
first algorithm is too slow to run in real-time. While learning
to play from existing data allows agents to quickly learn best
practices, it is often brittle; the data available can be expensive
to produce and may be missing key scenarios the agent should
be able to deal with. For gameplay, the algorithm is limited to
the strategies available in the data and cannot explore new
ones itself. Therefore, in games, supervised algorithms are
often combined with additional training through reinforcement
learning algorithms [133].

Another application of supervised learning in games is to
learn the state transitions of a game. Instead of providing the
action for a given state, the neural network can learn to predict
the next state for an action-state pair. Thus, the network is
essentially learning a model of the game, which can then be
used to play the game better or to perform planning [45].

2) Unsupervised Learning

Instead of learning a mapping between data and its labels,
the objective in unsupervised learning is to discover patterns
in the data. These algorithms can learn the distribution of
features for a dataset, which can be used to cluster similar
data, compress data into its essential features, or create new
synthetic data that is characteristic of the original data. For
games with sparse rewards (such as Montezuma’s Revenge),
learning from data in an unsupervised fashion is a potential
solution and an important open deep learning challenge.

A prominent unsupervised learning technique in deep learn-
ing is the autoencoder, which is a neural network that attempts
to learn the identity function such that the output is identical
to the input [80], [117]. The network consists of two parts:
an encoder that maps the input x to a low-dimensional hidden
vector h, and a decoder that attempts to re-construct x from h.
The main idea is that by keeping h small, the network has to
learn to compress the data and therefore learn a good represen-
tation. Researchers are beginning to apply such unsupervised
algorithms to games to help distill high dimensional data to
more meaningful lower dimensional data, but this research
direction is still in its early stages [45]. For a more detailed
overview of supervised and unsupervised learning see [126],
[39].

Fig. 1. The reinforcement learning framework where an agent’s policy π
is determined by a deep neural network. The state of the environment, or
an observation such as screen pixels, is fed as input to the agent’s policy
network. An action is sampled from the policy network’s output π where after
it receives a reward and the subsequent game state. The goal is to maximize the
cumulated rewards. The reinforcement learning algorithm updates the policy
(network parameters) based on the reward.

3) Reinforcement Learning Approaches
In reinforcement learning (RL) an agent learns a behavior by

interacting with an environment that provides a reward signal
back to the agent. A video game can easily be modeled as an
environment in an RL setting, wherein players are modeled as
agents with a finite set of actions that can be taken at each step
and the reward signal can be determined by the game score.

In RL, the agent relies on the reward signal. These signals
can occur frequently, such as the change in score within a
game, or it can occur infrequently, such as whether an agent
has won or lost a game. Video games and RL go well together
since most games give rewards for successful strategies. Open
world games do not always have a clear reward model and are
thus challenging for RL algorithms.

A key challenge in applying RL to games with sparse
rewards is to determine how to assign credit to the many
previous actions when a reward signal is obtained. The reward
R(s) for state s, needs to be propagated back to the actions
that lead to the reward. Historically, there are several different
ways this problem is approached which are described below.
If an environment can be described as a Markov Decision
Process (MDP), then the agent can build a probability tree of
future states and their rewards. The probability tree can then
be used to calculate the utility of the current state. For an RL
agent this means learning the model P (s′|s, a), where P is
the probability of state s′ given state s and action a. With a
model P , utilities can be calculated by

U(s) = R(s) + γmax
a

∑
s′

P (s′|s, a)U(s′),

where γ is the discount factor for the utility of future states.
This algorithm, known as Adaptive Dynamic Programming,
can converge rather quickly as it directly handles the credit
assignment problem [142]. The issue is that it has to build a
probability tree over the whole problem space and is therefore
intractable for large problems. As the games covered in this
work are considered ”large problems”, we will not go into
further detail on this algorithm.

Another approach to this problem is temporal difference
(TD) learning. In TD learning, the agent learns the utilities U
directly based off of the observation that the current utility is
equal to the current reward plus the utility value of the next
state [142]. Instead of learning the state transition model P ,
it learns to model the utility U , for every state. The update

3

equation for U is:

U(s) = U(s) + α(R(s) + γU(s′)− U(s)),

where α is the learning rate of the algorithm. The equation
above does not take into account how s′ was chosen. If a
reward is found at st, it will only affect U(st). The next time
the agent is at st−1, then U(st−1) will be aware of the future
reward. This will propagate backward over time. Likewise,
less common transitions will have less of an impact on utility
values. Therefore, U will converge to the same values as are
obtained from ADP, albeit slower.

There are alternative implementations of TD that learn
rewards for state-action pairs. This allows an agent to choose
an action, given the state, with no model of how to transition
to future states. For this reason, these approaches are referred
to as model-free methods. A popular model-free RL method
is Q-learning [162] where the utility of a state is equal to
the maximum Q-value for a state. The update equation for
Q-learning is:

Q(s, a) = Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)−Q(s, a)).

In Q-learning, the future reward is accounted for by selecting
the best-known future state-action pair. In a similar algorithm
called SARSA (State-Action-Reward-State-Action), Q(s, a) is
updated only when the next a has been selected and the next
s is known [118]. This action pair is used instead of the
maximum Q-value. This makes SARSA an on-policy method
in contrast to Q-learning which is off-policy because SARSA’s
Q-value accounts for the agent’s own policy.

Q-learning and SARSA can use a neural network as a
function approximator for the Q-function. The given Q update
equation can be used to provide the new ”expected” Q value
for a state-action pair. The network can then be updated as it
is in supervised learning.

An agent’s policy π(s) determines which action to take
given a state s. For Q-learning, a simple policy would be to
always take the action with the highest Q-value. Yet, early
on in training, Q-values are not very accurate and an agent
could get stuck always exploiting a small reward. A learning
agent should prioritize exploration of new actions as well as
the exploitation of what it has learned. This problem is known
as a multi-armed bandit problem and has been well explored.
The ε-greedy strategy is a simple approach that selects the
(estimated) optimal action with ε probability and otherwise
selects a random action.

One approach to RL is to perform gradient descent in the
policy’s parameter space. Let πθ(s, a) be the probability that
action a is taken at state s given parameters θ. The basic policy
gradient algorithm from the REINFORCE family of algo-
rithms [164] updates θ using the gradient ∇θ

∑
a πθ(s, a)R(s)

where R(s) is the discounted cumulative reward obtained from
s and forward. In practice, a sample of possible actions from
the policy is taken and it is updated to increase the likelihood
that the more successful actions are returned in the future.
This lends itself well to neural networks as π can be a neural
network and θ the network weights.

Actor-Critic methods combine the policy gradient approach
with TD learning, where an actor learns a policy πθ(s, a)

using the policy gradient algorithm, and the critic learns to
approximate R using TD-learning [143]. Together, they are
an effective approach to iteratively learning a policy. In actor-
critic methods there can either be a single network to predict
both π and R, or two separate networks. For an overview of
reinforcement learning applied to deep neural networks we
suggest the article by Arulkumaran et al. [2].

4) Evolutionary Approaches
The optimization techniques discussed so far rely on gra-

dient descent, based on differentiation of a defined error.
However, derivative-free optimization methods such as evo-
lutionary algorithms have also been widely used to train
neural networks, including, but not limited to, reinforcement
learning tasks. This approach, often referred to as neuroevo-
lution (NE), can optimize a network’s weights as well as
their topology/architecture. Because of their generality, NE
approaches have been applied extensively to different types
of video games. For a complete overview of this field, we
refer the interested reader to our NE survey paper [115].

Compared to gradient-descent based training methods, NE
approaches have the benefit of not requiring the network
to be differentiable and can be applied to both supervised,
unsupervised and reinforcement learning problems. The ability
to evolve the topology, as well as the weights, potentially
offers a way of automating the development of neural network
architecture, which currently requires considerable domain
knowledge. The promise of these techniques is that evolution
could find a neural network topology that is better at playing
a certain game than existing human-designed architectures.
While NE has been traditionally applied to problems with
lower input dimensionality than typical deep learning ap-
proaches, recently Salimans et al. [121] showed that evolu-
tion strategies, which rely on parameter-exploration through
stochastic noise instead of calculating gradients, can achieve
results competitive to current deep RL approaches for Atari
video game playing, given enough computational resources.

5) Hybrid Learning Approaches
More recently researchers have started to investigate hybrid

approaches for video game playing, which combine deep
learning methods with other machine learning approaches.
Both Alvernaz and Togelius [1] and Poulsen et al. [113]
experimented with combining a deep network trained through
gradient descent feeding a condensed feature representation
into a network trained through artificial evolution. These
hybrids aim to combine the best of both approaches as
deep learning methods are able to learn directly from high-
dimensional input, while evolutionary methods do not rely on
differentiable architectures and work well in games with sparse
rewards. Some results suggest that gradient-free methods seem
to be better in the early stages of training to avoid premature
convergence while gradient-based methods may be better in
the end when less exploration is needed [139].

Another hybrid method for board game playing was Al-
phaGo [133] that relied on deep neural networks and tree
search methods to defeat the world champion in Go, and [36]
that applies planning on top of a predictive model.

In general, the hybridization of ontogenetic RL (such as
Q-learning) with phylogenetic methods (such as evolutionary

4

algorithms) has the potential to be very impactful as it could
enable concurrent learning on different timescales [153].

III. GAME GENRES AND RESEARCH PLATFORMS

The fast progression of deep learning methods is undoubt-
edly due to the convention of comparing results on publicly
available datasets. A similar convention in game AI is to use
game environments to compare game playing algorithms, in
which methods are ranked based on their ability to score points
or win in games. Conferences like the IEEE Conference on
Computational Intelligence and Games run popular competi-
tions in a variety of game environments.

This section describes popular game genres and research
platforms, used in the literature, that are relevant to deep
learning; some examples are shown in Figure 2. For each
genre, we briefly outline what characterizes that genre and de-
scribe the challenges faced by algorithms playing games of the
genre. The video games that are discussed in this paper have
to a large extent supplanted an earlier generation of simpler
control problems that long served as the main reinforcement
learning benchmarks but are generally too simple for modern
RL methods. In such classic control problems, the input is
a simple feature vector, describing the position, velocity, and
angles etc. Popular platforms for such problems are rllab [29],
which includes classic problems such as pole balancing and
the mountain car problem, and MuJoCo (Multi-Joint dynamics
with Contact), a physics engine for complex control tasks such
as the humanoid walking task [152].

A. Arcade Games

Classic arcade games, of the type found in the late seven-
ties’ and early eighties’ arcade cabinets, home video game
consoles and home computers, have been commonly used
as AI benchmarks within the last decade. Representative
platforms for this game type are the Atari 2600, Nintendo
NES, Commodore 64 and ZX Spectrum. Most classic arcade
games are characterized by movement in a two-dimensional
space (sometimes represented isometrically to provide the illu-
sion of three-dimensional movement), heavy use of graphical
logics (where game rules are triggered by the intersection
of sprites or images), continuous-time progression, and either
continuous-space or discrete-space movement. The challenges
of playing such games vary by game. Most games require fast
reactions and precise timing, and a few games, in particular,
early sports games such as Track & Field (Konami, 1983)
rely almost exclusively on speed and reactions. Many games
require prioritization of several co-occurring events, which
requires some ability to predict the behavior or trajectory of
other entities in the game. This challenge is explicit in e.g.
Tapper (Bally Midway, 1983) but also in different ways part
of platform games such as Super Mario Bros (Nintendo, 1985)
and shooters such as Missile Command (Atari Inc., 1980).
Another common requirement is navigating mazes or other
complex environments, as exemplified clearly by games such
as Pac-Man (Namco, 1980) and Boulder Dash (First Star
Software, 1984). Some games, such as Montezuma’s Revenge
(Parker Brothers, 1984), require long-term planning involving

the memorization of temporarily unobservable game states.
Some games feature incomplete information and stochasticity,
others are completely deterministic and fully observable.

The most notable game platform used for deep learning
methods is the Arcade Learning Environment (ALE) [10].
ALE is built on top of the Atari 2600 emulator Stella and con-
tains more than 50 original Atari 2600 games. The framework
extracts the game score, 160×210 screen pixels and the RAM
content that can be used as input for game playing agents. ALE
was the main environment explored in the first deep RL papers
that used raw pixels as input. By enabling agents to learn from
visual input, ALE thus differs from classic control problems
in the reinforcement learning literature, such as the Cart Pole
and Mountain Car problems. An overview and discussion of
the ALE environment can be found in [91].

Another platform for classic arcade games is the Retro
Learning Environment (RLE) that currently contains seven
games released for the Super Nintendo Entertainment System
(SNES) [15]. Many of these games have 3D graphics and
the controller allows for over 720 action combinations. SNES
games are thus more complex and realistic than Atari 2600
games but RLE has not been as popular as ALE.

The General Video Game AI (GVG-AI) framework [116]
allows for easy creation and modification of games and levels
using the Video Game Description Language (VGDL) [122].
This is ideal for testing the generality of agents on multiple
games or levels. GVG-AI includes over 100 classic arcade
games each with five different levels.

B. Racing Games

Racing games are games where the player is tasked with
controlling some kind of vehicle or character so as to reach
a goal in the shortest possible time, or as to traverse as far
as possible along a track in a given time. Usually, the game
employs a first-person perspective or a vantage point from
just behind the player-controlled vehicle. The vast majority of
racing games take a continuous input signal as steering input,
similar to a steering wheel. Some games, such as those in
the Forza Motorsport (Microsoft Studios, 2005–2016) or Real
Racing (Firemint and EA Games, 2009–2013) series, allow
for complex input including gear stick, clutch and handbrake,
whereas more arcade-focused games such as those in the Need
for Speed (Electronic Arts, 1994–2015) series typically have
a simpler set of inputs and thus lower branching factor.

A challenge that is common in all racing games is that
the agent needs to control the position of the vehicle and
adjust the acceleration or braking, using fine-tuned continuous
input, so as to traverse the track as fast as possible. Doing
this optimally requires at least short-term planning, one or
two turns forward. If there are resources to be managed in
the game, such as fuel, damage or speed boosts, this requires
longer-term planning. When other vehicles are present on the
track, there is an adversarial planning aspect added, in trying
to manage or block overtaking; this planning is often done in
the presence of hidden information (position and resources of
other vehicles on different parts of the track).

5

ALE
(Breakout)

VizDoom Project Malmo
(Minecraft)

TORCS StarCraft: Brood WarGVGAI
(Zelda)

Fig. 2. Screenshots of selected games and frameworks used as research platforms for research in deep learning.

A popular environment for visual reinforcement learning
with realistic 3D graphics is the open racing car simulator
TORCS [168].

C. First-Person Shooters (FPS)

More advanced game environments have recently emerged
for visual reinforcement learning agents in a First-Person
Shooters (FPS). In contrast to classic arcade games such as
those in the ALE benchmark, FPSes have 3D graphics with
partially observable states and are thus a more realistic envi-
ronment to study. Usually, the viewpoint is that of the player-
controlled character, though some games that are broadly in
the FPS categories adopt an over-the-shoulder viewpoint. The
design of FPS games is such that part of the challenge is sim-
ply fast perception and reaction, in particular, spotting enemies
and quickly aiming at them. But there are other cognitive
challenges as well, including orientation and movement in
a complex three-dimensional environment, predicting actions
and locations of multiple adversaries, and in some game modes
also team-based collaboration. If visual inputs are used, there
is the challenge of extracting relevant information from pixels.

Among FPS platforms are ViZDoom, a framework that
allows agents to play the classic first-person shooter Doom (id
Software, 1993–2017) using the screen buffer as input [73].
DeepMind Lab is a platform for 3D navigation and puzzle-
solving tasks based on the Quake III Arena (id Software, 1999)
engine [6].

D. Open-World Games

Open-world games such as Minecraft (Mojang, 2011) or
the Grand Theft Auto (Rockstar Games, 1997–2013) series
are characterized by very non-linear gameplay, with a large
game world to explore, either no set goals or many goals
with unclear internal ordering, and large freedom of action
at any given time. Key challenges for agents are exploring the
world and setting goals which are realistic and meaningful.
As this is a very complex challenge, most research use these
open environments to explore reinforcement learning methods
that can reuse and transfer learned knowledge to new tasks.
Project Malmo is a platform built on top of the open-world
game Minecraft, which can be used to define many diverse
and complex problems [65].

E. Real-time Strategy Games

Strategy games are games where the player controls multiple
characters or units, and the objective of the game is to prevail
in some sort of conquest or conflict. Usually, but not always,

the narrative and graphics reflect a military conflict, where
units may be e.g. knights, tanks or battleships. The key
challenge in strategy games is to lay out and execute complex
plans involving multiple units. This challenge is in general
significantly harder than the planning challenge in classic
board games such as Chess mainly because multiple units
must be moved at any time and the effective branching factor
is typically enormous. The planning horizon can be extremely
long, where actions that are taken at the beginning of a game
impact the overall strategy. In addition, there is the challenge
of predicting the moves of one or several adversaries, who
have multiple units themselves. Real-time Strategy Games
(RTS) are strategy games which do not progress in discrete
turns, but where actions can be taken at any point in time. RTS
games add the challenge of time prioritization to the already
substantial challenges of playing strategy games.

The StarCraft (Blizzard Entertainment, 1998–2017) series
is without a doubt the most studied game in the Real-Time
Strategy (RTS) genre. The Brood War API (BWAPI)1 enables
software to communicate with StarCraft while the game runs,
e.g. to extract state features and perform actions. BWAPI has
been used extensively in game AI research, but currently, only
a few examples exist where deep learning has been applied.
TorchCraft is a library built on top of BWAPI that connects the
scientific computing framework Torch to StarCraft to enable
machine learning research for this game [145]. Additionally,
DeepMind and Blizzard (the developers of StarCraft) have
developed a machine learning API to support research in
StarCraft II with features such as simplified visuals designed
for convolutional networks [157]. This API contains several
mini-challenges while it also supports the full 1v1 game
setting. µRTS [104] and ELF [151] are two minimalistic RTS
game engines that implement some of the features that are
present in RTS games.

F. Team Sports Games

Popular sports games are typically based on team-based
sports such as soccer, basketball, and football. These games
aim to be as realistic as possible with life-like animations
and 3D graphics. Several soccer-like environments have been
used extensively as research platforms, both with physical
robots and 2D/3D simulations, in the annual Robot World
Cup Soccer Games (RoboCup) [3]. Keepaway Soccer is a
simplistic soccer-like environment where one team of agents
try to maintain control of the ball while another team tries to
gain control of it [138]. A similar environment for multi-agent

1http://bwapi.github.io/

6

learning is RoboCup 2D Half-Field-Offense (HFO) where
teams of 2-3 players either take the role as offense or defense
on one half of a soccer field [50].

G. Text Adventure Games

A classic text adventure game is a form of interactive fiction
where players are given descriptions and instructions in text,
rather than graphics, and interact with the storyline through
text-based commands [144]. These commands are usually used
to query the system about the state, interact with characters in
the story, collect and use items, or navigate the space in the
fictional world.

These games typically implement one of three text-based
interfaces: parser-based, choice-Based, and hyperlink-based
[54]. Choice-based and hyperlink-based interfaces provide the
possible actions to the player at a given state as a list, out
of context, or as links in the state description. Parser-Based
interfaces are, on the other hand, open to any input and the
player has to learn what words the game understands. This is
interesting for computers as it is much more akin to natural
language, where you have to know what actions should exist
based on your understanding of language and the given state.

Unlike some other game genres, like arcade games, text
adventure games have not had a standard benchmark of games
that everyone can compare against. This makes a lot of results
hard to directly compare. A lot of research has focused on
games that run on Infocom’s Z-Machine game engine, an
engine that can play a lot of the early, classic games. Recently,
Microsoft has introduced the environment TextWorld to help
create a standardized text adventure environment [25].

H. OpenAI Gym & Universe

OpenAI Gym is a large platform for comparing reinforce-
ment learning algorithms with a single interface to a suite
of different environments including ALE, GVG-AI, MuJoCo,
Malmo, ViZDoom and more [17]. OpenAI Universe is an
extension to OpenAI Gym that currently interfaces with more
than a thousand Flash games and aims to add many modern
video games in the future2.

IV. DEEP LEARNING METHODS FOR GAME PLAYING

This section gives an overview of deep learning techniques
used to play video games, divided by game genre. Table II
lists deep learning methods for each game genre and high-
lights which input features, network architecture, and training
methods they rely upon. A typical neural network architecture
used in deep RL is shown in Figure 3.

A. Arcade Games

The Arcade Learning Environment (ALE) consists of more
than 50 Atari games and has been the main testbed for deep
reinforcement learning algorithms that learn control policies
directly from raw pixels. This section reviews the main ad-
vancements that have been demonstrated in ALE. An overview
of these advancements is shown in Table IV-A.

2https://universe.openai.com/

Deep Q-Network (DQN) was the first learning algorithm
that showed human expert-level control in ALE [97]. DQN
was tested in seven Atari 2600 games and outperformed
previous approaches, such as SARSA with feature construction
[7] and neuroevolution [49], as well as a human expert on
three of the games. DQN is based on Q-learning, where a
neural network model learns to approximate Qπ(s, a) that
estimates the expected return of taking action a in state s while
following a behavior policy µ. A simple network architecture
consisting of two convolutional layers followed by a single
fully-connected layer was used as a function approximator.

A key mechanism in DQN is experience replay [89], where
experiences in the form {st, at, rt+1, st+1} are stored in a
replay memory and randomly sampled in batches when the
network is updated. This enables the algorithm to reuse and
learn from past and uncorrelated experiences, which reduces
the variance of the updates. DQN was later extended with
a separate target Q-network which parameters are held fixed
between individual updates and was shown to achieve above
human expert scores in 29 out of 49 tested games [98].

Deep Recurrent Q-Learning (DRQN) extends the DQN
architecture with a recurrent layer before the output and works
well for games with partially observable states [51].

A distributed version of DQN was shown to outperform a
non-distributed version in 41 of the 49 games using the Gorila
architecture (General Reinforcement Learning Architecture)
[100]. Gorila parallelizes actors that collect experiences into
a distributed replay memory as well as parallelizing learners
that train on samples from the same replay memory.

One problem with the Q-learning algorithm is that it
often overestimates action values because it uses the same
value function for action-selection and action-evaluation. Dou-
ble DQN, based on double Q-learning [46], reduces the
observed overestimation by learning two value networks
with parameters θ and θ

′
that both use the other network

for value-estimation, such that the target Yt = Rt+1 +
γQ(St+1,maxaQ(St+1, a; θt); θ

′

t) [155].
Another improvement is prioritized experience replay from

which important experiences are sampled more frequently
based on the TD-error, which was shown to significantly
improve both DQN and Double DQN [123].

Dueling DQN uses a network that is split into two streams
after the convolutional layers to separately estimate state-
value V π(s) and the action-advantage Aπ(s, a), such that
Qπ(s, a) = V π(s) + Aπ(s, a) [161]. Dueling DQN improves
Double DQN and can also be combined with prioritized
experience replay.

Double DQN and Dueling DQN were also tested in the five
more complex games in the RLE and achieved a mean score
of around 50% of a human expert [15]. The best result in
these experiments was by Dueling DQN in the game Mortal
Kombat (Midway, 1992) with 128%.

Bootstrapped DQN improves exploration by training multi-
ple Q-networks. A randomly sampled network is used during
each training episode and bootstrap masks modulate the gra-
dients to train the networks differently [106].

Robust policies can be learned with DQN for competitive
or cooperative multi-player games by training one network for

7

LSTM

...

...

Input Convolution Convolution Convolution Fully connected Recurrency Output

Left
Stay

Right

Fig. 3. An example of a typical network architecture used in deep reinforcement learning for game-playing with pixel input. The input usually consists of a
preprocessed screen image, or several stacked or concatenated images, which is followed by a couple of convolutional layers (often without pooling), and a
few fully connected layers. Recurrent networks have a recurrent layer, such as LSTM or GRU, after the fully connected layers. The output typically consists
of one unit for each unique combination of actions in the game, and actor-critic methods also have one for the state value V (s). Examples of this architecture,
without a recurrent layer and with some variations, are [97], [98], [100], [155], [123], [106], [96], [160], [120], [121], [9], [35], [161], [56], [166], [139],
[24], [30], and examples with a recurrent layer are [51], [96], [63].

each player and play them against each other in the training
process [146]. Agents trained in multiplayer mode perform
very well against novel opponents, whereas agents trained
against a stationary algorithm fail to generalize their strategies
to novel adversaries.

Multi-threaded asynchronous variants of DQN, SARSA and
Actor-Critic methods can utilize multiple CPU threads on a
single machine, reducing training roughly linear to the number
of parallel threads [96]. These variants do not rely on a
replay memory because the network is updated on uncorrelated
experiences from parallel actors which also helps to stabilize
on-policy methods. The Asynchronous Advantage Actor-Critic
(A3C) algorithm is an actor-critic method that uses several
parallel agents to collect experiences that all asynchronously
update a global actor-critic network. A3C outperformed Prior-
itized Dueling DQN, which was trained for 8 days on a GPU,
with just half the training time on a CPU [96].

An actor-critic method with experience replay (ACER)
implements an efficient trust region policy method that forces
updates to not deviate far from a running average of past
policies [160]. The performance of ACER in ALE matches
Dueling DQN with prioritized experience replay and A3C
without experience replay, while it is much more data efficient.

A3C with progressive neural networks [120] can effectively
transfer learning from one game to another. The training is
done by instantiating a network for every new task with
connections to all the previous learned networks. This gives
the new network access to knowledge already learned.

The Advantage Actor-Critic (A2C), a synchronous variant
of A3C [96], updates the parameters synchronously in batches
and has comparable performance while only maintaining one
neural network [166]. Actor-Critic using Kronecker-Factored
Trust Region (ACKTR) extends A2C by approximating the
natural policy gradient updates for both the actor and the
critic [166]. In Atari, ACKTR has slower updates compared
to A2C (at most 25% per time step) but is more sample
efficient (e.g. by a factor of 10 in Atlantis) [166]. Trust
Region Policy Optimization (TRPO) uses a surrogate objective
with theoretical guarantees for monotonic policy improvement,
while it practically implements an approximation called trust
region [128]. This is done by constraining network updates
with a bound on the KL divergence between the current and

the updated policy. TRPO has robust and data efficient perfor-
mance in Atari games while it has high memory requirements
and several restrictions. Proximal Policy Optimization (PPO)
is an improvement on TRPO that uses a similar surrogate
objective [129], but instead uses a soft constraint (originally
suggested in [128]) by adding the KL-divergence as a penalty.
Instead of having a fixed penalty coefficient, it uses a clipped
surrogate objective that penalizes policy updates outside some
specified interval. PPO was shown to be more sample efficient
than A2C and on par with ACER in Atari, while PPO does
not rely on replay memory. PPO was also shown to have
comparable or better performance than TRPO in continuous
control tasks while being simpler and easier to parallelize.

IMPALA (Importance Weighted Actor-Learner Architecture)
is an actor-critic method where multiple learners with GPU
access share gradients between each other while being syn-
chronously updated from a set of actors [30]. This method
can scale to a large number of machines and outperforms
A3C. Additionally, IMPALA was trained, with one set of
parameters, to play all 57 Atari games in ALE with a mean
human-normalized score of 176.9% (median of 59.7%) [30].
Experiences collected by the actors in the IMPALA setup
can lack behind the learners’ policy and thus result in off-
policy learning. This discrepancy is mitigated through a V-
trace algorithm that weighs the importance of experiences
based on the difference between the actor’s and learner’s
policies [30].

UNREAL (UNsupervised REinforcement and Auxiliary
Learning) algorithm is based on A3C but uses a replay
memory from which it learns auxiliary tasks and pseudo-
reward functions concurrently [63]. UNREAL only shows
a small improvement over vanilla A3C in ALE, but larger
improvements in other domains (see Section IV-D).

Distributional DQN takes a distributional perspective on
reinforcement learning by treating Q(s, a) as an approximate
distribution of returns instead of a single approximate expec-
tation for each action [9]. The distribution is divided into a
so-called set of atoms, which determines the granularity of
the distribution. Their results show that the more fine-grained
the distributions are, the better are the results, and with 51
atoms (this variant was called C51) it achieved mean scores
in ALE almost comparable to UNREAL.

8

In NoisyNets, noise is added to the network parameters and a
unique noise level for each parameter is learned using gradient
descent [35]. In contrast to ε-greedy exploration, where an
agent either samples actions from the policy or from a uniform
random distribution, NoisyNets use a noisy version of the
policy to ensure exploration, and this was shown to improve
DQN (NoisyNet-DQN) and A3C (NoisyNet-A3C).

Rainbow combines several DQN enhancements: Double
DQN, Prioritized Replay, Dueling DQN, Distributional DQN,
and NoisyNets, and achieved a mean score higher than any of
the enhancements individually [56].

Evolution Strategies (ES) are black-box optimization algo-
rithms that rely on parameter-exploration through stochastic
noise instead of calculating gradients and were found to be
highly parallelizable with a linear speedup in training time
when more CPUs are used [121]. 720 CPUs were used for
one hour whereafter ES managed to outperform A3C (which
ran for 4 days) in 23 out of 51 games, while ES used 3 to 10
times as much data due to its high parallelization. ES only ran
a single day and thus their full potential is currently unknown.
Novelty search is a popular algorithm that can overcome
environments with deceptive and/or sparse rewards by guiding
the search towards novel behaviors [84]. ES has been extended
to use Novelty Search (NS-ES) which outperforms ES on
several challenging Atari games by defining novel behaviors
based on the RAM states [24]. A quality-diversity variant
called NSR-ES that uses both novelty and the reward signal
reach an even higher performance [24]. NS-ES and NSR-ES
reached worse results on a few games, possibly where the
reward function is not sparse or deceptive.

A simple genetic algorithm with a Gaussian noise mutation
operator evolves the parameters of a deep neural network
(Deep GA) and can achieve surprisingly good scores across
several Atari games [139]. Deep GA shows comparable results
to DQN, A3C, and ES on 13 Atari games using up to
thousands of CPUs in parallel. Additionally, random search,
given roughly the same amount of computation, was shown to
outperform DQN on 4 out of 13 games and A3C on 5 games
[139]. While there has been concern that evolutionary methods
do not scale as well as gradient descent-based methods,
one possibility is separating the feature construction from
the policy network; evolutionary algorithms can then create
extremely small networks that still play well [26].

A few supervised learning approaches have been applied to
arcade games. In Guo et al. [42] a slow planning agent was ap-
plied offline, using Monte-Carlo Tree Search, to generate data
for training a CNN via multinomial classification. This ap-
proach, called UCTtoClassification, was shown to outperform
DQN. Policy distillation [119] or actor-mimic [108] methods
can be used to train one network to mimic a set of policies
(e.g. for different games). These methods can reduce the size
of the network and sometimes also improve the performance.
A frame prediction model can be learned from a dataset
generated by a DQN agent using the encoding-transformation-
decoding network architecture; the model can then be used
to improve exploration in a retraining phase [103]. Self-
supervised tasks, such as reward prediction, validation of state-
successor pairs, and mapping states and successor states to

Results Mean Median Year and orig. paper
DQN [161] 228% 79% 2013 [97]
Double DQN (DDQN) [161] 307% 118% 2015 [155]
Dueling DDQN [161] 373% 151% 2015 [161]
Prior. DDQN [161] 435% 124% 2015 [123]
Prior. Duel DDQN [161] 592% 172% 2015 [123]
A3C [63] 853% N/A 2016 [96]
UNREAL [63]* 880% 250% 2016 [63]
NoisyNet-DQN [56] N/A 118% 2017 [35]
Distr. DQN (C51) [9] 701% 178% 2017 [9]
Rainbow [56] N/A 223% 2017 [56]
IMPALA [30] 958% 192% 2018 [30]
Ape-X DQN [61] N/A 434% 2018 [61]

TABLE I
HUMAN-NORMALIZED SCORES REPORTED WITH VARIOUS DEEP

REINFORCEMENT LEARNING ALGORITHMS IN ALE ON 57 ATARI GAMES
USING THE 30 no-ops EVALUATION METRIC. REFERENCES IN THE FIRST

COLUMN REFER TO THE PAPER THAT INCLUDED THE RESULTS, WHILE THE
LAST COLUMN REFERENCES THE PAPER THAT FIRST INTRODUCED THE

SPECIFIC TECHNIQUE. NOTE, THAT THE REPORTED SCORES USE VARIOUS
AMOUNTS OF TRAINING TIME AND RESOURCES, THUS NOT ENTIRELY

COMPARABLE. SUCCESSORS TYPICALLY USE MORE RESOURCES AND LESS
WALL-CLOCK TIME. *HYPER-PARAMETERS WAS TUNED FOR EVERY GAME

LEADING TO HIGHER SCORES FOR UNREAL.

actions can define auxiliary losses used in pre-training of a
policy network, which ultimately can improve learning [132].

The training objective provides feedback to the agent while
the performance objective specifies the target behavior. Often,
a single reward function takes both roles, but for some
games, the performance objective does not guide the training
sufficiently. The Hybrid Reward Architecture (HRA) splits the
reward function into n different reward functions, where each
of them are assigned a separate learning agent [156]. HRA
does this by having n output streams in the network, and thus
n Q-values, which are combined when actions are selected.
HRA was able to achieve the maximum possible score in less
than 3,000 episodes.

B. Montezuma’s Revenge

Environments with sparse feedback remain an open chal-
lenge for reinforcement learning. The game Montezuma’s
Revenge is a good example of such an environment in ALE
and has thus been studied in more detail and used for bench-
marking learning methods based on intrinsic motivation and
curiosity. The main idea of applying intrinsic motivation is to
improve the exploration of the environment based on some
self-rewarding system, which eventually will help the agent
to obtain an extrinsic reward. DQN fails to obtain any reward
in this game (receiving a score of 0) and Gorila achieves an
average score of just 4.2. A human expert can achieve 4,367
points and it is clear that the methods presented so far are
unable to deal with environments with such sparse rewards. A
few promising methods aim to overcome these challenges.

Hierarchical-DQN (h-DQN) [77] operates on two temporal
scales, where one Q-value function Q1(s, a; g), the controller,
learns a policy over actions that satisfy goals chosen by a
higher-level Q-value function Q2(s, g), the meta-controller,
which learns a policy over intrinsic goals (i.e. which goals
to select). This method was able to reach an average score
of around 400 in Montezuma’s Revenge where goals were
defined as states in which the agent reaches (collides with) a

9

certain type of object. This method, therefore, must rely on
some object detection mechanism.

Pseudo-counts have been used to provide intrinsic motiva-
tion in the form of exploration bonuses when unexpected pixel
configurations are observed and can be derived from CTS
density models [8] or neural density models [107]. Density
models assign probabilities to images, and a model’s pseudo
count of an observed image is the model’s change in pre-
diction compared to being trained one additional time on the
same image. Impressive results were achieved in Montezuma’s
Revenge and other hard Atari games by combining DQN with
the CTS density model (DQN-CTS) or the PixelCNN density
model (DQN-PixelCNN) [8]. Interestingly, the results were
less impressive when the CTS density model was combined
with A3C (A3C-CTS) [8].

Ape-X DQN is a distributed DQN architecture similar to
Gorila, as in actors are separated from the learner. Ape-X DQN
was able to reach state-of-art results across the 57 Atari games
using 376 cores and 1 GPU, running at 50K FPS [61]. Deep Q-
learning from Demonstrations (DQfD) draw samples from an
experience replay buffer that is initialized with demonstration
data from a human expert and is superior to previous methods
on 11 Atari games with sparse rewards [57]. Ape-X DQfD
combines the distributed architecture from Ape-X and the
learning algorithm from DQfD using expert data and was
shown to outperform all previous methods in ALE as well
as beating level 1 in Montezuma’s Revenge [112].

To improve the performance, Kaplan et. al. augmented
the agent training with text instructions. An instruction-based
reinforcement learning approach that uses both a CNN for
visual input and RNN for text-based instruction, inputs man-
aged to achieve a score of 3,500 points. Instructions were
linked to positions in rooms and agents were rewarded when
they reached those locations [71], demonstrating a fruitful
collaboration between a human and a learning algorithm.
Experiments in Montezuma’s Revenge also showed that the
network learned to generalize to unseen instructions that were
similar to previous instructions.

Similar work demonstrates how an agent can execute
text-based commands in a 2D maze-like environment called
XWORLD, such as walking to and picking up objects, after
having learned a teacher’s language [172]. An RNN-based
language module is connected to a CNN-based perception
module. These two modules were then connected to an action-
selection module and a recognition module that learns the
teacher’s language in a question answering process.

C. Racing Games

There are generally two paradigms for vision-based au-
tonomous driving highlighted in Chen at al. [21]; (1) end-
to-end systems that learn to map images to actions directly
(behavior reflex), and (2) systems that parse the sensor data to
make informed decisions (mediated perception). An approach
that falls in between these paradigms is direct perception
where a CNN learns to map from images to meaningful
affordance indicators, such as the car angle and distance to lane
markings, from which a simple controller can make decisions

[21]. Direct perception was trained on recordings of 12 hours
of human driving in TORCS and the trained system was able
to drive in very diverse environments. Amazingly, the network
was also able to generalize to real images.

End-to-end reinforcement learning algorithms such as DQN
cannot be directly applied to continuous environments such
as racing games because the action space must be discrete
and with relatively low dimensionality. Instead, policy gradient
methods, such as actor-critic [27] and Deterministic Policy
Gradient (DPG) [134] can learn policies in high-dimensional
and continuous action spaces. Deep DPG (DDPG) is a policy
gradient method that implements both experience replay and
a separate target network and was used to train a CNN end-
to-end in TORCS from images [88].

The aforementioned A3C methods have also been applied
to the racing game TORCS using only pixels as input [96]. In
those experiments, rewards were shaped as the agent’s velocity
on the track, and after 12 hours of training, A3C reached a
score between roughly 75% and 90% of a human tester in
tracks with and without opponent bots, respectively.

While most approaches to training deep networks from
high-dimensional input in video games are based on gradient
descent, a notable exception is an approach by Koutnı́k et
al. [76], where Fourier-type coefficients were evolved that
encoded a recurrent network with over 1 million weights. Here,
evolution was able to find a high-performing controller for
TORCS that only relied on high-dimensional visual input.

D. First-Person Shooters

Kempka et al. [73] demonstrated that a CNN with max-
pooling and fully connected layers trained with DQN can
achieve human-like behaviors in basic scenarios. In the Visual
Doom AI Competition 20163, a number of participants submit-
ted pre-trained neural network-based agents that competed in
a multi-player deathmatch setting. Both a limited competition
was held, in which bots competed in known levels, and a full
competition that included bots competing in unseen levels. The
winner of the limited track used a CNN trained with A3C using
reward shaping and curriculum learning [167]. Reward shaping
tackled the problem of sparse and delayed rewards, giving
artificial positive rewards for picking up items and negative
rewards for using ammunition and losing health. Curriculum
learning attempts to speed up learning by training on a set
of progressively harder environments [11]. The second-place
entry in the limited track used a modified DRQN network
architecture with an additional stream of fully connected layers
to learn supervised auxiliary tasks such as enemy detection,
with the purpose of speeding up the training of the convolu-
tional layers [79]. Position inference and object mapping from
pixels and depth-buffers using Simultaneous Localization and
Mapping (SLAM) also improve DQN in Doom [14].

The winner of the full deathmatch competition implemented
a Direct Future Prediction (DFP) approach that was shown to
outperform DQN and A3C [28]. The architecture used in DFP
has three streams: one for the screen pixels, one for lower-
dimensional measurements describing the agent’s current state,

3http://vizdoom.cs.put.edu.pl/competition-cig-2016

10

TABLE II
OVERVIEW OF DEEP LEARNING METHODS APPLIED TO GAMES. WE REFER TO features AS LOW-DIMENSIONAL ITEMS AND VALUES THAT DESCRIBE THE

STATE OF THE GAME SUCH AS HEALTH, AMMUNITION, SCORE, OBJECTS, ETC. MLP REFERS TO A TRADITIONAL FULLY-CONNECTED ARCHITECTURE
WITHOUT CONVOLUTIONAL OR RECURRENT LAYERS.

Game Method Input Architecture Training Miscellaneous

Atari
2600

(ALE)
Fe

at
ur

es
Pi

xe
ls

Te
xt

CN
N

RN
N

Ex
t.

M
em

or
y

M
LP

Su
pe

rv
ise

d
Q

-le
ar

ni
ng

A
ct

or
-c

rit
ic

ES G
A

A
ux

ili
ar

y
Le

ar
ni

ng

H
ie

ra
rc

hi
ca

l
In

tri
ns

ic
M

ot
iv

at
io

n

Tr
an

sf
er

Le
ar

ni
ng

D
ist

rib
ut

ed

DQN [97], [98] # # # # # # # # # # # # # #
DRQN [51] # # # # # # # # # # # # #
UCTtoClassification [42] # # # # # # # # # # # # # #
Gorila [100] # # # # # # # # # # # # #
Double DQN [155] # # # # # # # # # # # # # #
Prioritized DQN [123] # # # # # # # # # # # # # #
Dueling DQN [161] # # # # # # # # # # # # # #
Bootstrapped DQN [106] # # # # # # # # # # # # # #
A3C / A2C [96] # # # # # # # # # # # #
ACER [160] # # # # # # # # # # # # #
Progressive Networks [120] # # # # # # # # # # # #
UNREAL [63] # # # # # # # # # # #
Scalable Evolution Strategies [121] # # # # # # # # # # # # #
Distributional DQN (C51) [9] # # # # # # # # # # # # # #
NoisyNet-DQN [35] # # # # # # # # # # # # # #
NoisyNet-A3C [35] # # # # # # # # # # # # #
Rainbow [56] # # # # # # # # # # # # # #
ACKTR [166] # # # # # # # # # # # # #
Deep GA [139] # # # # # # # # # # # # #
NS-ES / NSR-ES [24] # # # # # # # # # # # # #
IMPALA [30] # # # # # # # # # # # # #
TRPO [128] # # # # # # # # # # # # #
PPO [129] # # # # # # # # # # # #
DQfD [57] # # # # # # # # # # # # #
Ape-X DQN [61] # # # # # # # # # # # # #
Ape-X DQfD [112] # # # # # # # # # # # #

Ms. Pac-Man Hybrid Reward Architecture (HRA) [156] # # # # # # # # # # # # #
Montezuma’s

Revenge
Hierarchical-DQN (h-DQN) [77] # # # # # # # # # # #
DQN-CTS / DQN-PixelCNN [8] # # # # # # # # # # # # #

Racing
Direct Perception [21] # # # # # # # # # # # #
Deep DPG (DDPG) [88] # # # # # # # # # # # # # #
A3C [96] # # # # # # # # # # # # #

Doom

DQN [73] # # # # # # # # # # # # # #
A3C [167] # # # # # # # # # # # # #
DRQN [79] # # # # # # # # # # # #
DQN + SLAM [14] # # # # # # # # # # # # #
Direct Future Prediction (DFP) [28] # # # # # # # # # # # #

Minecraft
H-DRLN [150] # # # # # # # # # # # #
RMQN / FRMQN [102] # # # # # # # # # # #
TSCL [92] # # # # # # # # # # # # # #

StarCraft

Zero Order [154] # # # # # # # # # # # # # # #
IQL [33] # # # # # # # # # # # # # #
BiCNet [111] # # # # # # # # # # # # # #
COMA [32] # # # # # # # # # # # # # #
Macro-action SL [68] # # # # # # # # # # # # #
Macro-action CNNFQ/PPO [148], [141] # # # # # # # # # #

RoboCup Soccer
(HFO)

DDPG + Inverting Gradients [52] # # # # # # # # # # # # # #
DDPG + Mixing policy targets [53] # # # # # # # # # # # # # #

2D billiard Object-centric prediction [36] # # # # # # # # # # # #

Text adventure
games

LSTM-DQN [101] # # # # # # # # # # # # # #
DRRN [54] # # # # # # # # # # # # #
Affordance Based Action Selection [37] # # # # # # # # # # # # #
Golovin [75] # # # # # # # # # # # # # # #
AE-DQN [173] # # # # # # # # # # # # #

and one for describing the agent’s goal, which is a linear
combination of prioritized measurements. DFP collects expe-
riences in a memory and is trained with supervised learning
techniques to predict the future measurements based on the
current state, goal and selected action. During training, actions
are selected that yield the best-predicted outcome, based on

the current goal. This method can be trained on various goals
and generalizes to unseen goals at test time.

Navigation in 3D environments is one of the important skills
required for FPS games and has been studied extensively. A
CNN+LSTM network was trained with A3C extended with
additional outputs predicting the pixel depths and loop closure,

11

showing significant improvements [95].
The UNREAL algorithm, based on A3C, implements an

auxiliary task that trains the network to predict the immediate
subsequent future reward from a sequence of consecutive
observations. UNREAL was tested on fruit gathering and
exploration tasks in OpenArena and achieved a mean human-
normalized score of 87%, where A3C only achieved 53% [63].

The ability to transfer knowledge to new environments can
reduce the learning time and can in some cases be crucial for
some challenging tasks. Transfer learning can be achieved by
pre-training a network in similar environments with simpler
tasks or by using random textures during training [20]. The
Distill and Transfer Learning (Distral) method trains several
worker policies (one for each task) concurrently and shares a
distilled policy [149]. The worker policies are regularized to
stay close to the shared policy which will be the centroid of
the worker policies. Distral was applied to DeepMind Lab.

The Intrinsic Curiosity Module (ICM), consisting of several
neural networks, computes an intrinsic reward each time step
based on the agent’s inability to predict the outcome of taking
actions. It was shown to learn to navigate in complex Doom
and Super Mario levels only relying on intrinsic rewards [110].

E. Open-World Games

The Hierarchical Deep Reinforcement Learning Network
(H-DRLN) architecture implements a lifelong learning frame-
work, which is shown to be able to transfer knowledge
between simple tasks in Minecraft such as navigation, item
collection, and placement tasks [150]. H-DRLN uses a vari-
ation of policy distillation [119] to retain and encapsulate
learned knowledge into a single network.

Neural Turing Machines (NTMs) are fully differentiable
neural networks coupled with an external memory resource,
which can learn to solve simple algorithmic problems such
as copying and sorting [40]. Two memory-based variations,
inspired by NTM, called Recurrent Memory Q-Network
(RMQN) and Feedback Recurrent Memory Q-Network (FR-
MQN) were able to solve complex navigation tasks that require
memory and active perception [102].

The Teacher-Student Curriculum Learning (TSCL) frame-
work incorporates a teacher that prioritizes tasks wherein
the student’s performance is either increasing (learning) or
decreasing (forgetting) [92]. TSCL enabled a policy gradient
learning method to solve mazes that were otherwise not
possible with a uniform sampling of subtasks.

F. Real-Time Strategy Games

The previous sections described methods that learn to play
games end-to-end, i.e. a neural network is trained to map states
directly to actions. Real-Time Strategy (RTS) games, however,
offer much more complex environments, in which players have
to control multiple agents simultaneously in real-time on a
partially observable map. Additionally, RTS games have no
in-game scoring and thus the reward is determined by who
wins the game. For these reasons, learning to play RTS games
end-to-end may be infeasible for the foreseeable future and
instead, sub-problems have been studied so far.

For the simplistic RTS platform µRTS a CNN was trained as
a state evaluator using supervised learning on a generated data
set and used in combination with Monte Carlo Tree Search
[136], [4]. This approach performed significantly better than
previous evaluation methods.

StarCraft has been a popular game platform for AI research,
but so far only with a few deep learning approaches. Deep
learning methods for StarCraft have focused on micromanage-
ment (unit control) or build-order planning and has ignored
other aspects of the game. The problem of delayed rewards
in StarCraft can be circumvented in combat scenarios; here
rewards can be shaped as the difference between damage
inflicted and damage incurred [154], [33], [111], [32]. States
and actions are often described locally relative to units, which
is extracted from the game engine. If agents are trained
individually it is difficult to know which agents contributed
to the global reward [19], a problem known as the multi-
agent credit assignment problem. One approach is to train
a generic network, which controls each unit separately and
search in policy space using Zero-Order optimization based
on the reward accrued in each episode [154]. This strategy
was able to learn successful policies for armies of up to 15
units.

Independent Q-learning (IQL) simplifies the multi-agent RL
problem by controlling units individually while treating other
agents as if they were part of the environment [147]. This
enables Q-learning to scale well to a large number of agents.
However, when combining IQL with recent techniques such
as experience replay, agents tend to optimize their policies
based on experiences with obsolete policies. This problem
is overcome by applying fingerprints to experiences and by
applying an importance-weighted loss function that naturally
decays obsolete data, which has shown improvements for some
small combat scenarios [33].

The Multiagent Bidirectionally-Coordinated Network (BiC-
Net) implements a vectorized actor-critic framework based on
a bi-directional RNN, with one dimension for every agent, and
outputs a sequence of actions [111]. This network architecture
is unique to the other approaches as it can handle an arbitrary
number of units of different types.

Counterfactual multi-agent (COMA) policy gradients is an
actor-critic method with a centralized critic and decentralized
actors that address the multi-agent credit assignment problem
with a counterfactual baseline computed by the critic network
[32]. COMA achieves state-of-the-art results, for decentralized
methods, in small combat scenarios with up to ten units on
each side.

Deep learning has also been applied to build-order planning
in StarCraft using macro-based supervised learning approach
to imitate human strategies [68]. The trained network was
integrated as a module used in an existing bot capable of
playing the full game with an other-wise hand-crafted behav-
ior. Another macro-based approach, here using RL instead of
SL, called Convolutional Neural Network Fitted Q-Learning
(CNNFQ), was trained with Double DQN for build-order
planning in StarCraft II and was able to win against medium-
level scripted bots on small maps [148]. A macro action-based
reinforcement learning method that uses Proximal Policy Opti-

12

mization (PPO) for build order planning and high-level attack
planning was able to outperform the built-in bot in StarCraft
II at level 10 [141]. This is particularly impressive as the
level 10 bot cheats by having full vision of the map and
faster resource harvesting. The results were obtained using
1920 parallel actors on 3840 CPUs across 80 machines and
only for one matchup on one map. This system won a few
games against Platinum-level human players but lost all games
against Diamond-level players. The authors report that the
learned policy ”lacks strategy diversity in order to consistently
beat human players” [141].

G. Team Sports Games

Deep Deterministic Policy Gradients (DDPG) was applied
to RoboCup 2D Half-Field-Offense (HFO) [51]. The actor
network used two output streams, one for the selection of
discrete action types (dash, turn, tackle, and kick) and one for
each action type’s 1-2 continuously-valued parameters (power
and direction). The Inverting Gradients bounding approach
downscales the gradients as the output approaches its bound-
aries and inverts the gradients if the parameter exceeds them.
This approach outperformed both SARSA and the best agent
in the 2012 RoboCup. DDPG was also applied to HFO by
mixing on-policy updates with 1-step Q-Learning updates [53]
and outperformed a hand-coded agent with expert knowledge
with one player on each team.

H. Physics Games

As video games are usually a reflection or simplification
of the real world, it can be fruitful to learn an intuition
about the physical laws in an environment. A predictive
neural network using an object-centered approach (also called
fixations) learned to run simulations of a billiards game after
being trained on random interactions [36]. This predictive
model could then be used for planning actions in the game.

A similar predictive approach was tested in a 3D game-
like environment, using the Unreal Engine, where ResNet-34
[55] (a deep residual network used for image classification)
was extended and trained to predict the visual outcome of
blocks that were stacked such that they would usually fall [86].
Residual networks implement shortcut connections that skip
layers, which can improve learning in very deep networks.

I. Text Adventure Games

Text adventure games, in which both states and actions are
presented as text only, are a special video game genre. A
network architecture called LSTM-DQN [101] was designed
specifically to play these games and is implemented using
LSTM networks that convert text from the world state into
a vector representation, which estimates Q-values for all
possible state-action pairs. LSTM-DQN was able to complete
between 96% and 100% of the quests on average in two
different text adventure games.

To be able to improve on these results, researchers have
moved toward learning language models and word embeddings
to augment the neural network. An approach that combines

reinforcement learning with explicit language understanding
is Deep Reinforcement Relevance Net (DRRN) [54]. This
approach has two networks that learn word embeddings. One
embeds the state description, the other embeds the action
description. Relevance between the two embedding vectors
is calculated with an interaction function such as the inner
product of the vectors or a bilinear operation. The Relevance
is then used as the Q-Value and the whole process is trained
end-to-end with Deep Q-Learning. This approach allows the
network to generalize to phrases not seen during training
which is an improvement for very large text games. The
approach was tested on the text games Saving John and
Machine of Death, both choice-based games.

Taking language modeling further, Fulda et. al. explicitly
modeled language affordances to assist in action selection [37].
A word embedding is first learned from a Wikipedia Corpus
via unsupervised learning [94] and this embedding is then used
to calculate analogies such as song is to sing as bike is to
x, where x can then be calculated in the embedding space
[94]. The authors build a dictionary of verbs, noun pairs, and
another one of object manipulation pairs. Using the learned
affordances, the model can suggest a small set of actions for a
state description. Policies were learned with Q-Learning and
tested on 50 Z-Machine games.

The Golovin Agent focuses exclusively on language models
[75] that are pre-trained from a corpus of books in the fantasy
genre. Using word embeddings, the agent can replace syn-
onyms with known words. Golovin is built of five command
generators: General, Movement, Battle, Gather, and Inventory.
These are generated by analyzing the state description, using
the language models to calculate and sample from a number
of features for each command. Golovin uses no reinforcement
learning and scores comparable to the affordance method.

Most recently, Zahavy et. al. proposed another DQN method
[173]. This method uses a type of attention mechanism called
Action Elimination Network (AEN). In parser-based games,
the actions space is very large. The AEN learns, while playing,
to predict which actions that will have no effect for a given
state description. The AEN is then used to eliminate most of
the available actions for a given state and after which the re-
maining actions are evaluated with the Q-network. The whole
process is trained end-to-end and achieves similar performance
to DQN with a manually constrained actions space. Despite
the progress made for text adventure games, current techniques
are still far from matching human performance.

Outside of text adventure games, natural language process-
ing has been used for other text-based games as well. To facil-
itate communication, a deep distributed recurrent Q-network
(DDRQN) architecture was used to train several agents to
learn a communication protocol to solve the multi-agent Hats
and Switch riddles [34]. One of the novel modifications in
DDRQN is that agents use shared network weights that are
conditioned on their unique ID, which enables faster learning
while retaining diversity between agents.

V. HISTORICAL OVERVIEW OF DEEP LEARNING IN GAMES

The previous section discussed deep learning methods in
games according to the game type. This section instead looks

13

at the development of these methods in terms of how they
influenced each other, giving a historical overview of the deep
learning methods that are reviewed in the previous section.
Many of these methods are inspired from or directly build
upon previous methods, while some are applied to different
game genres and others are tailored to specific types of games.

Figure 4 shows an influence diagram with the reviewed
methods and their relations to earlier methods (the current
section can be read as a long caption to that figure). Each
method in the diagram is colored to show the game bench-
mark. DQN [97] was very influential as an algorithm that
uses gradient-based deep learning for pixel-based video game
playing and was originally applied to the Atari benchmark.
Note that earlier approaches exist but with less success such
as [109], and successful gradient-free methods [115]. Double
DQN [155] and Dueling DQN [161] are early extensions that
use multiple networks to improve estimations. DRQN [51]
uses a recurrent neural network as the Q network. Prioritized
DQN [123] is another early extension and it adds improved
experience replay sampling. Bootstrapped DQN [106] builds
off of Double DQN with a different improved sampling
strategy. Further DQN enhancements used for Atari include:
the C51 algorithm [9], which is based on DQN but changes the
Q function; Noisy-Nets which make the networks stochastic
to aid with exploration [35]; DQfD which also learns from
examples [57]; and Rainbow, which combines many of these
state-of-the-art techniques together [56].

Gorila was the first asynchronous method based on DQN
[100] and was followed by A3C [96] which uses multiple
asynchronous agents for an actor-critic approach. This was
further extended at the end of 2016 with UNREAL [63], which
incorporates work done with auxiliary learning to handle
sparse feedback environments. Since then there has been a
lot of additional extensions on A3C [166], [160], [120], [35].
IMPALA has taken it further with focusing on a single trained
agent that can play all of the Atari games [30]. In 2018, the
move toward large scale distributed learning has continued and
advanced with Ape-X [61], [112].

Evolutionary techniques are also seeing a Renaissance for
video games. First Salimans et. al. showed that Evolution
Strategies could compete with deep RL [121]. Then two more
papers came out of Uber AI: one showing that derivative-free
evolutionary algorithms can compete with deep RL [139], and
an extension to ES [24]. These benefit from easy paralleliza-
tion and possibly have some advantage in exploration.

Another approach used on Atari around the time that DQN
was introduced is Trust Region Policy Optimization [77].
This updates a surrogate objective that is updated from the
environment. Later in 2017, Proximal Policy Optimization was
introduced as a more robust, simpler surrogate optimization
scheme that also draws from innovations in A3C [129]. Some
extensions are specifically for Montezuma’s revenge, which
is a game within the ALE benchmark, but it is particularly
difficult due to sparse rewards and hidden information. The
algorithms that do best on Montezuma do so by extending
DQN with intrinsic motivation [8] and hierarchical learning
[77]. Ms. Pack-Man was also singled out from Atari, where
the reward function was learned in separate parts to make the

agent more robust to new environments [156].

Doom is another benchmark that is new as of 2016. Most of
the work for this game has been extending methods designed
for Atari to handle richer data. A3C + Curriculum Learning
[167] proposes using curriculum learning with A3C. DRQN +
Auxiliary Learning [79] extends DRQN by adding additional
rewards during training. DQN + SLAM [14] combines tech-
niques for mapping unknown environments with DQN.

DFP [28] is the only approach that is not extending an Atari
technique. Like UCT To Classification [42] for Atari, Object-
centric Prediction [36] for Billiard, and Direct Perception [21]
for Racing, DFP uses supervised learning to learn about the
game. All of these, except UCT To Classification, learn to
directly predict some future state of the game and make a
prediction from this information. None of these works, all from
different years, refer to each other. Besides Direct Perception,
the only unique work for racing is Deep DPG [88], which
extends DQN for continuous controls. This technique has been
extended for RoboCup Soccer [52] [53].

Work on StarCraft micro-management (unit control) is
based on Q-learning started in late 2016. IQL [33] extends
DQN Prioritized DQN by treating all other agents as part
of the environment. COMA [32] extends IQL by calculating
counterfactual rewards, the marginal contribution each agent
added. biCNet [111] and Zero Order Optimization [154], are
reinforcement learning based but are not derived from DQN.
Another popular approach is hierarchical learning. In 2017
it was tried with replay data [68] and in 2018 state of the
art results were achieved by using it with two different RL
methods [141], [148].

Some work published in 2016 extends DQN to play
Minecraft [150]. At around the same time, techniques were
developed to make DQN context-aware and modular to handle
the large state space [102]. Recently, curriculum learning has
been applied to Minecraft as well [92].

DQN was applied to text adventure games in 2015 [101].
Soon after, it was modified to have a language-specific archi-
tecture and use the state-action pair relevance as the Q value
[54]. Most of the work on these games has been focused on
explicit language modeling. Golovin Agent and Affordance
Based Action Selection both use neural networks to learn
language models which provide the actions for the agents to
play [37], [75]. Recently, in 2018, DQN was used again paired
with an Action Elimination Network [173].

Combining extensions from previous algorithms have
proven to be a promising direction for deep learning applied
to video games, with Atari being the most popular benchmark
for RL. Another clear trend, which is apparent in Table II,
is the focus on parallelization: distributing the work among
multiple CPUs and GPUs. Parallelization is most common
with actor-critic methods, such as A2C and A3C, and evo-
lutionary approaches, such as Deep GA [139] and Evolution
Strategies [121], [24]. Hierarchical reinforcement learning,
intrinsic motivation, and transfer learning are promising new
directions to explore to master currently unsolved problems in
video game playing.

14

2014

2015

2016

2017

Atari Montezuma’s
Revenge

RoboCupMs Pac-Man Racing Doom Minecraft StarCraft 2D Billiard Text
Adventure

2018

DDPG+
Mixing Policy

Targets

TSCL

Rainbow

Noisy
Net-DQN

Noisy
Net-A3C

ACKTR

UNREALGORILA

Bootstrapped
DQN Dueling

DQN

H-DQN

A3C +
Curriculum
Learning

H-DRLN

LSTM-DQN

Object-centric
Prediction

UCT To
Classification

DQN-CTS

DRQN

DQN +
SLAM

DFP
RMQN/
FRMQN

Direct
Perception

Zero
Order

BiCNet

COMA

DRQN +
Auxiliary
Learning

Prioritized
DQN

DQN-
PixelCNN

Double
DQN

Scalable
Evolutionary
Strategies

DQN

HRA

DDPG +
Inverse

Gradients

DDPG

C51

IQL

ACER

A2C
IMPALA

Deep
GA

NS-ES

NSR-ES

Progressive
Networks

A3C
TRPO

PPO

DQfD

Ape-X
DQN

Ape-X
DQfD

Macro-action
CNNFQ/PPO

DRRN

Affordance
Based Action

Selection

Golovin
AE-DQN

Macro-action
SL

Fig. 4. Influence diagram of the deep learning techniques discussed in this paper. Each node is an algorithm while the color represents the game benchmark.
The distance from the center represents the date that the original paper was published on arXiv. The arrows represent how techniques are related. Each
node points to all other nodes that used or modified that technique. Arrows pointing to a particular algorithm show which algorithms influenced its design.
Influences are not transitive: if algorithm a influenced b and b influenced c, a did not necessarily influence c.

VI. OPEN CHALLENGES

While deep learning has shown remarkable results in video
game playing, a multitude of important open challenges re-
main, which we review here. Indeed, looking back at the
current state of research from a decade or two in the future, it
is likely that we will see the current research as early steps in a
broad and important research field. This section is divided into
four broad categories (agent model properties, game industry,
learning models of games, and computational resources) with
different game-playing challenges that remain open for deep
learning techniques. We mention a few potential approaches
for some of the challenges while the best way forward for
others is currently not clear.

A. Agent Model Properties
1) General Video Game Playing
Being able to solve a single problem does not make you

intelligent; nobody would say that Deep Blue or AlphaGo

[133] possess general intelligence, as they cannot even play
Checkers (without re-training), much less make coffee or tie
their shoelaces. To learn generally intelligent behavior, you
need to train on not just a single task, but many different
tasks [83]. Video games have been suggested as ideal en-
vironments for learning general intelligence, partly because
there are so many video games that share common interface
and reward conventions [124]. Yet, the vast majority of work
on deep learning in video games focuses on learning to play a
single game or even performing a single task in a single game.

While deep RL-based approaches can learn to play a variety
of different Atari games, it is still a significant challenge to
develop algorithms that can learn to play any kind of game
(e.g. Atari games, DOOM, and StarCraft). Current approaches
still require significant effort to design the network architecture
and reward function to a specific type of game.

Progress on the problem of playing multiple games includes
progressive neural networks [120], which allow new games

15

to be learned (without forgetting previously learned ones)
and solved quicker by exploiting previously learned features
through lateral connections. However, they require a separate
network for each task. Elastic weight consolidation [74] can
learn multiple Atari games sequentially and avoids catas-
trophic forgetting by protecting weights from being modified
that are important for previously learned games. In PathNet
an evolutionary algorithm is used to select which parts of a
neural network are used for learning new tasks, demonstrating
some transfer learning performance on ALE games [31].

In the future it will be important to extend these methods to
learn to play multiple games, even if those games are very dif-
ferent — most current approaches focus on different (known)
games in the ALE framework. One suitable avenue for this
kind of research is the new Learning Track of the GVGAI
competition [78], [116]. GVGAI has a potentially unlimited
set of games, unlike ALE. Recent work in GVGAI showed
that model-free deep RL overfitted not just to the individual
game, but even to the individual level; this was countered by
continuously generating new levels during training [69].

It is possible that significant advances on the multi-game
problem will come from outside deep learning. In particular,
the recent Tangled Graph representation, a form of genetic
programming, has shown promise in this task [72]. The recent
IMPALA algorithm tries to tackle multi-game learning through
massive scaling, with somewhat promising results [30].

2) Overcoming sparse, delayed, or deceptive Rewards
Games such as Montezuma’s Revenge that are characterized

by sparse rewards still pose a challenge for most Deep RL
approaches. While recent advances that combine DQN with
intrinsic motivation [8] or expert demonstrations [57], [112]
can help, games with sparse rewards are still a challenge for
current deep RL methods. There is a long history of research
in intrinsically motivated reinforcement learning [22], [125]
as well as hierarchical reinforcement learning which might
be useful here [5], [163]. The Project Malmo environment,
based on Minecraft, provides an excellent venue for creating
tasks with very sparse rewards where agents need to set their
own goals. Derivative-free and gradient-free methods, such
as evolution strategies and genetic algorithms, explore the
parameter space by sampling locally and are promising for
these games, especially when combined with novelty search
as in [24], [139].

3) Learning with multiple agents
Current deep RL approaches are mostly concerned with

training a single agent. A few exceptions exist where multiple
agents have to cooperate [85], [33], [154], [111], [32], but
it remains an open challenge how these can scale to more
agents in various situations. In many current video games
such as StarCraft or GTA V, many agents interact with each
other and the player. To scale multi-agent learning in video
games to the same level of performance as current single agent
approaches will likely require new methods that can effectively
train multiple agents at the same time.

4) Lifetime adaptation
While NPCs can be trained to play a variety of games

well (see Section IV), current machine learning techniques
still struggle when it comes to agents that should be able to

adapt during their lifetime, i.e. while the game is being played.
For example, a human player can quickly change its behavior
when realizing that the player is always ambushed at the same
position in an FPS map. However, most current DL techniques
would require expensive re-training to adapt to these situations
and other unforeseen situations that they have not encountered
during training. The amount of data provided by the real-time
behavior of a single human is nowhere near that required by
common deep learning methods. This challenge is related to
the wider problem of few-shot learning, transfer learning and
general video game playing. Solving it will be important to
create more believable and human-like NPCs.

5) Human-like game playing
Lifetime learning is just one of the differences that current

NPCs lack in comparison to human players. Most approaches
are concerned with creating agents that play a particular
game as well as possible, often only taking into account
the score reached. However, if humans are expected to play
against or cooperate with AI-based bots in video games, other
factors come into play. Instead of creating a bot that plays
perfectly, in this context it becomes more important that the
bot is believable and is fun to play against, with similar
idiosyncrasies we expect from a human player.

Human-like game playing is an active area of research with
two different competitions focused on human-like behavior
namely the 2k BotPrize [58], [59] and the Turing Test track
of the Mario AI Championship [131]. Most entries in these
competitions are based on various non-neural network tech-
niques while some used evolutionary training of deep neural
networks to generate human-like behavior [127], [105].

6) Adjustable performance levels
Almost all current research on DL for game playing aims

at creating agents that can play the game as well as possible,
maybe even “beating” it. However, for purposes of both game
testing, creating tutorials, and demonstrating games—in all
those places where it would be important to have human-
like game ‘play—it could be important to be able to create
agents with a particular skill level. If your agent plays better
than any human player, then it is not a good model of what
a human would do in the game. At its most basic, this could
entail training an agent that plays the game very well, and
then find a way of decreasing the performance of that agent.
However, it would be more useful to be able to adjust the
performance level in a more fine-grained way, so as to for
example separately control the reaction speed or long-term
planning ability of an agent. Even more useful would be to be
able to ban certain capacities of playstyles of a trained agent,
so a to test whether for example a given level could be solved
without certain actions or tactics.

One path to realizing this is the concept of procedural
personas, where the preferences of an agent are encoded as a
set of utility weights [60]. However, this concept has not been
implemented using deep learning, and it is still unclear how
to realize the planning depth control in this context.

7) Dealing with extremely large decision spaces
Whereas the average branching factor hovers around 30

for Chess and 300 for Go, a game like StarCraft has a
branching factor that is orders of magnitudes larger. While

16

recent advances in evolutionary planning have allowed real-
time and long-term planning in games with larger branching
factors to [66], [159], [67], how we can scale Deep RL to such
levels of complexity is an important open challenge. Learning
heuristics with deep learning in these games to enhance search
algorithms is also a promising direction.

B. Game Industry

1) Adoption in the game industry
Many of the recent advances in DL have been accelerated

because of the increased interest by a variety of different
companies such as Facebook, Google/Alphabet, Microsoft and
Amazon, which heavily invest in its development. However,
the game industry has not embraced these advances to the
same extent. This sometimes surprises commentators outside
of the game industry, as games are seen as making heavy
use of AI techniques. However, the type of AI that is most
commonly used in the games industry focuses more on hand-
authoring of expressive non-player character (NPC) behaviors
rather than machine learning. An often-cited reason for the
lack of adoption of neural networks (and similar methods)
within this industry is that such methods are inherently difficult
to control, which could result in unwanted NPC behaviors (e.g.
an NPC could decide to kill a key actor that is relevant to the
story). Additionally, training deep network models require a
certain level of expertise and the pool of experts in this area
is still limited. It is important to address these challenges to
encourage a wide adoption in the game industry.

Additionally, while most DL approaches focus exclusively
on playing games as well as possible, this goal might not be
the most important for the game industry [171]. Here the level
of fun or engagement the player experiences while playing
is a crucial component. One use of DL for game playing
in the game production process is for game testing, where
artificial agents test that levels are solvable or that the difficulty
is appropriate. DL might see its most prominent use in the
games industry not for playing games, but for generating game
content [130] based on training on existing content [140],
[158], or for modeling player experience [169].

Within the game industry, several of the large development
and technology companies, including Electronic Arts, Ubisoft
and Unity have recently started in-house research arms focus-
ing partly on deep learning. It remains to be seen whether
these techniques will also be embraced by the development
arms of these companies or their customers.

2) Interactive tools for game development
Related to the previous challenge, there is currently a lack

of tools for designers to easily train NPC behaviors. While
many open-source tools to training deep networks exist now,
most of them require a significant level of expertise. A tool
that allows designers to easily specify desired NPC behaviors
(and undesired ones) while assuring a certain level of control
over the final trained outcomes would greatly accelerate the
uptake of these new methods in the game industry.

Learning from human preferences is one promising direc-
tion in this area. This approach has been extensively studied
in the context of neuroevolution [115], and also in the context

of video games, allowing non-expert users to breed behaviors
for Super Mario [135]. Recently a similar preference-based
approach was applied to deep RL method [23], allowing agents
to learn Atari games based on a combination of human prefer-
ence learning and deep RL. Recently, the game company King
published results using imitation learning to learn policies
for play-testing of Candy Crush levels, showing a promising
direction for new design-tools [41].

3) Creating new types of video games
DL could potentially offer a way to create completely new

games. Most of today’s game designs stem from a time when
no advanced AI methods were available or the hardware
too limited to utilize them, meaning that games have been
designed to not need AI. Designing new games around AI
can help to break out of these limitations. While evolutionary
algorithms and neuroevolution in particular [115] have allowed
the creation of completely new types of games, DL based on
gradient descent has not been explored in this context. Neu-
roevolution is a core mechanic in games such as NERO [137],
Galactic Arms Race [48], Petalz [114] and EvoComman-
der [64]. One challenge with gradient-based optimization is
that the structures are often limited to having mathematical
smoothness (i.e. differentiability), making it challenging to
create interesting and unexpected outputs.

C. Learning models of games

Much work on deep learning for game-playing takes a
model-free end-to-end learning approach, where a neural net-
work is trained to produce actions given state observations
as input. However, it is well known that a good and fast
forward model makes game-playing much easier, as it makes
it possible to use planning methods based on tree search or
evolution [171]. Therefore, an important open challenge in this
field is to develop methods that can learn a forward model of
the game, making it possible to reason about its dynamics.

The hope is that approaches that learn the rules of the game
can generalize better to different game variations and show
more robust learning. Promising work in this area includes
the approach by Guzdial et al. [44] that learns a simple game
engine of Super Mario Bros. from gameplay data. Kansky et
al. [70] introduce the idea of Schema Networks that follow
an object-oriented approach and are trained to predict future
object attributes and rewards based on the current attributes
and actions. A trained schema network thus provides a prob-
abilistic model that can be used for planning and is able to
perform zero-shot transfer to variations of Breakout similar to
those used in training.

D. Computational Resources

With more advanced computational models and a larger
number of agents in open-worlds, computational speed be-
comes a concern. Methods that aim to make the networks
computationally more efficient by either compressing networks
[62] or pruning networks after training [47], [43] could be
useful. Of course, improvements in processing power in gen-
eral or for neural networks specifically will also be important.
Currently, it is not feasible to train networks in real-time to

17

adapt to changes in the game or to fit players’ playing styles,
something which could be useful in the design process.

VII. CONCLUSION

This paper reviewed deep learning methods applied to
game playing in video games of various genres including;
arcade, racing, first-person shooters, open-world, real-time
strategy, team sports, physics, and text adventure games. Most
of the reviewed work is within end-to-end model-free deep
reinforcement learning, where a convolutional neural network
learns to play directly from raw pixels by interacting with the
game. Recent work demonstrates that derivative-free evolution
strategies and genetic algorithms are competitive alternatives.
Some of the reviewed work apply supervised learning to
imitate behaviors from game logs, while others are based on
methods that learn a model of the environment. For simple
games, such as most arcade games, the reviewed methods can
achieve above human-level performance, while there are many
open challenges in more complex games.

ACKNOWLEDGEMENTS

We thank the numerous colleagues who took the time to
comment on drafts of this article, including Chen Tessler,
Diego Pérez-Liébana, Ethan Caballero, Hal Daumé III, Jonas
Busk, Kai Arulkumaran, Malcolm Heywood, Marc G. Belle-
mare, Marc-Philippe Huget, Mike Preuss, Nando de Freitas,
Nicolas A. Barriga, Olivier Delalleau, Peter Stone, Santiago
Ontañón, Tambet Matiisen, Yong Fu, and Yuqing Hou.

REFERENCES

[1] S. Alvernaz and J. Togelius. Autoencoder-augmented neuroevolution
for visual doom playing. In Computational Intelligence and Games
(CIG), 2017 IEEE Conference on. IEEE, 2017.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.
Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[3] M. Asada, M. M. Veloso, M. Tambe, I. Noda, H. Kitano, and G. K.
Kraetzschmar. Overview of robocup-98. AI magazine, 21(1):9, 2000.

[4] N. A. Barriga, M. Stanescu, and M. Buro. Combining strategic learning
and tactical search in real-time strategy games. 2017.

[5] A. G. Barto and S. Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(4):341–
379, 2003.

[6] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright,
H. Küttler, A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al. Deepmind
lab. arXiv preprint arXiv:1612.03801, 2016.

[7] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents. In
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[8] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos. Unifying count-based exploration and intrinsic motivation.
In Advances in Neural Information Processing Systems, pages 1471–
1479, 2016.

[9] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspec-
tive on reinforcement learning. In Proceedings of the International
Conference on Machine Learning (ICML), 2017.

[10] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents. J.
Artif. Intell. Res.(JAIR), 47:253–279, 2013.

[11] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum
learning. In Proceedings of the 26th annual international conference
on machine learning, pages 41–48. ACM, 2009.

[12] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. 2013.

[13] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. In Advances in neural information
processing systems, pages 2546–2554, 2011.

[14] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli, N. Siddharth, and
P. H. Torr. Playing doom with SLAM-augmented deep reinforcement
learning. arXiv preprint arXiv:1612.00380, 2016.

[15] N. Bhonker, S. Rozenberg, and I. Hubara. Playing SNES in the retro
learning environment. 2017.

[16] M. Bogdanovic, D. Markovikj, M. Denil, and N. De Freitas. Deep
apprenticeship learning for playing video games. In Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[17] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of monte carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in games, 4(1):1–43, 2012.

[19] Y.-H. Chang, T. Ho, and L. P. Kaelbling. All learning is local: Multi-
agent learning in global reward games. In NIPS, pages 807–814, 2003.

[20] D. S. Chaplot, G. Lample, K. M. Sathyendra, and R. Salakhutdinov.
Transfer deep reinforcement learning in 3D environments: An empirical
study. NIPS, 2016.

[21] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2722–
2730, 2015.

[22] N. Chentanez, A. G. Barto, and S. P. Singh. Intrinsically motivated
reinforcement learning. In Advances in neural information processing
systems, pages 1281–1288, 2005.

[23] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and
D. Amodei. Deep reinforcement learning from human preferences.
In Advances in Neural Information Processing Systems, pages 4302–
4310, 2017.

[24] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune.
Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents. In Advances in
Neural Information Processing Systems, pages 5032–5043, 2018.

[25] M.-A. Côté, A. Kádár, X. Yuan, B. Kybartas, T. Barnes, E. Fine,
J. Moore, M. Hausknecht, L. E. Asri, M. Adada, W. Tay, and
A. Trischler. Textworld: A learning environment for text-based games.
arXiv preprint arXiv:1806.11532, 2018.

[26] G. Cuccu, J. Togelius, and P. Cudre-Mauroux. Playing atari with six
neurons. arXiv preprint arXiv:1806.01363, 2018.

[27] T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforcement
learning with continuous action in practice. In American Control
Conference (ACC), 2012, pages 2177–2182. IEEE, 2012.

[28] A. Dosovitskiy and V. Koltun. Learning to act by predicting the
future. In Proceedings of the International Conference on Learning
Representations, 2017.

[29] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel.
Benchmarking deep reinforcement learning for continuous control. In
Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

[30] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and
K. Kavukcuoglu. IMPALA: Scalable distributed deep-RL with im-
portance weighted actor-learner architectures. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1407–1416, Stockholmsmssan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

[31] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra. Pathnet: Evolution channels gradient
descent in super neural networks. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2017.

[32] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of AAAI,
2018.

[33] J. Foerster, N. Nardelli, G. Farquhar, P. Torr, P. Kohli, S. Whiteson,
et al. Stabilising experience replay for deep multi-agent reinforcement
learning. In Proceedings of the International Conference on Machine
Learning, 2017.

[34] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning
to communicate to solve riddles with deep distributed recurrent q-
networks. arXiv preprint arXiv:1602.02672, 2016.

18

[35] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell,
and S. Legg. Noisy networks for exploration. In International
Conference on Learning Representations, 2018.

[36] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual
predictive models of physics for playing billiards. In International
Conference on Learning Representations (ICLR), 2016.

[37] N. Fulda, D. Ricks, B. Murdoch, and D. Wingate. What can you do with
a rock? affordance extraction viaword embeddings. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pages
1039–1045. AAAI Press, 2017.

[38] L. Galway, D. Charles, and M. Black. Machine learning in digital
games: a survey. Artificial Intelligence Review, 29(2):123–161, 2008.

[39] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016.

[40] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[41] S. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
R. Meurling, B. Kozakowski, and L. Cao. Human-like playtesting with
deep learning. In IEEE Conference on Computational Intelligence and
Games (CIG 2018), 2018.

[42] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search
planning. In Advances in neural information processing systems, pages
3338–3346, 2014.

[43] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient
dnns. In Advances In Neural Information Processing Systems, pages
1379–1387, 2016.

[44] M. Guzdial, B. Li, and M. O. Riedl. Game engine learning from
video. In nternational Joint Conference on Artificial Intelligence (IJCAI
2017), 2017.

[45] D. Ha and J. Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

[46] H. V. Hasselt. Double q-learning. In Advances in Neural Information
Processing Systems, pages 2613–2621, 2010.

[47] B. Hassibi, D. G. Stork, et al. Second order derivatives for network
pruning: Optimal brain surgeon. Advances in neural information
processing systems, pages 164–164, 1993.

[48] E. J. Hastings, R. K. Guha, and K. O. Stanley. Automatic content
generation in the galactic arms race video game. IEEE Transactions
on Computational Intelligence and AI in Games, 1(4):245–263, 2009.

[49] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone. A neuroevo-
lution approach to general atari game playing. IEEE Transactions on
Computational Intelligence and AI in Games, 6(4):355–366, 2014.

[50] M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan,
and P. Stone. Half field offense: An environment for multiagent
learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop, 2016.

[51] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially
observable mdps. In AAAI Fall Symposium on Sequential Decision
Making for Intelligent Agents (AAAI-SDMIA15), November 2015.

[52] M. Hausknecht and P. Stone. Deep reinforcement learning in parame-
terized action space. May 2016.

[53] M. Hausknecht and P. Stone. On-policy vs. off-policy updates for deep
reinforcement learning. In Deep Reinforcement Learning: Frontiers and
Challenges, IJCAI 2016 Workshop, 2016.

[54] J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Ostendorf.
Deep reinforcement learning with a natural language action space.
In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages
1621–1630, 2016.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[56] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. G. Azar, and D. Silver. Rainbow:
Combining improvements in deep reinforcement learning. In AAAI,
2018.

[57] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold, et al. Deep
q-learning from demonstrations. In Proceedings of AAAI, 2018.

[58] P. Hingston. A new design for a turing test for bots. In Computational
Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 345–
350. IEEE, 2010.

[59] P. Hingston. Believable Bots: Can Computers Play Like People?
Springer, 2012.

[60] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis. Generative
agents for player decision modeling in games. In FDG, 2014.

[61] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver. Distributed prioritized experience replay.
In International Conference on Learning Representations (ICLR), 2018.

[62] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360,
2016.

[63] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo,
D. Silver, and K. Kavukcuoglu. Reinforcement learning with un-
supervised auxiliary tasks. In International Conference on Learning
Representations (ICLR), 2017.

[64] D. Jallov, S. Risi, and J. Togelius. Evocommander: A novel game based
on evolving and switching between artificial brains. IEEE Transactions
on Computational Intelligence and AI in Games, 9(2):181–191, 2017.

[65] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo
platform for artificial intelligence experimentation. In International
joint conference on artificial intelligence (IJCAI), page 4246, 2016.

[66] N. Justesen, T. Mahlmann, and J. Togelius. Online evolution for multi-
action adversarial games. In European Conference on the Applications
of Evolutionary Computation, pages 590–603. Springer, 2016.

[67] N. Justesen and S. Risi. Continual online evolution for in-game
build order adaptation in starcraft. In The Genetic and Evolutionary
Computation Conference (GECCO), 2017.

[68] N. Justesen and S. Risi. Learning macromanagement in StarCraft from
replays using deep learning. In Computational Intelligence and Games,
2017. CIG 2017. IEEE Symposium on. IEEE, 2017.

[69] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi. Illuminating generalization in deep reinforcement learning
through procedural level generation. NeurIPS 2018 Workshop on Deep
Reinforcement Learning, 2018.

[70] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla,
X. Lou, N. Dorfman, S. Sidor, S. Phoenix, and D. George. Schema
networks: Zero-shot transfer with a generative causal model of intu-
itive physics. In Proceedings International Conference on Machine
Learning, 2017.

[71] R. Kaplan, C. Sauer, and A. Sosa. Beating atari with natural language
guided reinforcement learning. arXiv preprint arXiv:1704.05539, 2017.

[72] S. Kelly and M. I. Heywood. Multi-task learning in atari video
games with emergent tangled program graphs. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 195–202.
ACM, 2017.

[73] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski.
Vizdoom: A doom-based ai research platform for visual reinforcement
learning. In Computational Intelligence and Games (CIG), 2016 IEEE
Conference on, pages 1–8. IEEE, 2016.

[74] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceed-
ings of the National Academy of Sciences, page 201611835, 2017.

[75] B. Kostka, J. Kwiecieli, J. Kowalski, and P. Rychlikowski. Text-based
adventures of the golovin ai agent. In Computational Intelligence and
Games (CIG), 2017 IEEE Conference on, pages 181–188. IEEE, 2017.

[76] J. Koutnı́k, G. Cuccu, J. Schmidhuber, and F. Gomez. Evolving large-
scale neural networks for vision-based reinforcement learning. In
Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pages 1061–1068. ACM, 2013.

[77] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 3675–3683, 2016.

[78] K. Kunanusont, S. M. Lucas, and D. Perez-Liebana. General video
game ai: Learning from screen capture. In Evolutionary Computation
(CEC), 2017 IEEE Congress on, pages 2078–2085. IEEE, 2017.

[79] G. Lample and D. S. Chaplot. Playing FPS games with deep
reinforcement learning. In AAAI Conference on Artificial Intelligence,
2017.

[80] Y. Le Cun. Modèles connexionnistes de l’apprentissage. PhD thesis,
Paris 6, 1987.

[81] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[82] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

[83] S. Legg and M. Hutter. Universal intelligence: A definition of machine
intelligence. Minds and Machines, 17(4):391–444, 2007.

19

[84] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve
problems through the search for novelty. In ALIFE, pages 329–336,
2008.

[85] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-
agent reinforcement learning in sequential social dilemmas. In Proceed-
ings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, pages 464–473. International Foundation for Autonomous
Agents and Multiagent Systems, 2017.

[86] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block
towers by example. In International Conference on Machine Learning,
pages 430–438, 2016.

[87] Y. Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[88] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep reinforce-
ment learning. International Conference on Learning Representations
(ICLR), arXiv:1509.02971, 2016.

[89] L.-J. Lin. Reinforcement learning for robots using neural networks.
PhD thesis, Fujitsu Laboratories Ltd, 1993.

[90] S. M. Lucas and G. Kendall. Evolutionary computation and games.
IEEE Computational Intelligence Magazine, 1(1):10–18, 2006.

[91] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness,
M. Hausknecht, and M. Bowling. Revisiting the arcade learning
environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[92] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher-student
curriculum learning. Deep Reinforcement Learning Symposium, NIPS,
2017.

[93] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O.
Stanley, and C. H. Yong. Computational intelligence in games.
Computational Intelligence: Principles and Practice, pages 155–191,
2006.

[94] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[95] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al. Learning
to navigate in complex environments. International Conference on
Learning Representations (ICLR), arXiv:1611.03673, 2016.

[96] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine
Learning, 2016.

[97] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement
learning. In NIPS Deep Learning Workshop. 2013.

[98] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[99] H. Muñoz-Avila, C. Bauckhage, M. Bida, C. B. Congdon, and
G. Kendall. Learning and game AI. In Dagstuhl Follow-Ups, volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[100] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,
A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen,
et al. Massively parallel methods for deep reinforcement learning.
arXiv preprint arXiv:1507.04296, 2015.

[101] K. Narasimhan, T. D. Kulkarni, and R. Barzilay. Language under-
standing for textbased games using deep reinforcement learning. In
In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Citeseer, 2015.

[102] J. Oh, V. Chockalingam, Satinder, and H. Lee. Control of memory,
active perception, and action in minecraft. In Proceedings of The
33rd International Conference on Machine Learning, volume 48, pages
2790–2799, 2016.

[103] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional
video prediction using deep networks in atari games. In Advances in
Neural Information Processing Systems, pages 2863–2871, 2015.

[104] S. Ontanón. The combinatorial multi-armed bandit problem and its
application to real-time strategy games. In Proceedings of the Ninth
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 58–64. AAAI Press, 2013.

[105] J. Ortega, N. Shaker, J. Togelius, and G. N. Yannakakis. Imitating
human playing styles in super mario bros. Entertainment Computing,
4(2):93–104, 2013.

[106] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration
via bootstrapped DQN. In Advances In Neural Information Processing
Systems, pages 4026–4034, 2016.

[107] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-
based exploration with neural density models. pages 2721–2730, 2017.

[108] E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. 2016.

[109] M. Parker and B. D. Bryant. Neurovisual control in the quake ii
environment. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1):44–54, 2012.

[110] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven
exploration by self-supervised prediction. In ICML, 2017.

[111] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang.
Multiagent bidirectionally-coordinated nets for learning to play star-
craft combat games. arXiv preprint arXiv:1703.10069, 2017.

[112] T. Pohlen, B. Piot, T. Hester, M. G. Azar, D. Horgan, D. Budden,
G. Barth-Maron, H. van Hasselt, J. Quan, M. Večerı́k, et al. Observe
and look further: Achieving consistent performance on atari. arXiv
preprint arXiv:1805.11593, 2018.

[113] A. Precht, M. Thorhauge, M. Hvilshj, and S. Risi. DLNE: a hybridiza-
tion of deep learning and neuroevolution for visual control. In IEEE
Conference on Computational Intelligence and Games (CIG 2017),
2017.

[114] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley.
Combining search-based procedural content generation and social
gaming in the petalz video game. In Aiide, 2012.

[115] S. Risi and J. Togelius. Neuroevolution in games: State of the art and
open challenges. IEEE Transactions on Computational Intelligence
and AI in Games, 2015.

[116] R. Rodriguez Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-
Liebana. Deep reinforcement learning for general video game AI. In
Computational Intelligence and Games (CIG), 2018 IEEE Conference
on. IEEE, 2018.

[117] D. E. Rumelhart, G. E. Hinton, J. L. McClelland, et al. A general
framework for parallel distributed processing. Parallel distributed
processing: Explorations in the microstructure of cognition, 1:45–76,
1986.

[118] G. A. Rummery and M. Niranjan. On-line Q-learning using connec-
tionist systems, volume 37. University of Cambridge, Department of
Engineering, 1994.

[119] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirk-
patrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy
distillation. International Conference on Learning Representations
(ICLR), 2016.

[120] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive neural
networks. arXiv preprint arXiv:1606.04671, 2016.

[121] T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

[122] T. Schaul. A video game description language for model-based or
interactive learning. In Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pages 1–8. IEEE, 2013.

[123] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. In International Conference on Learning Representations,
Puerto Rico, 2016.

[124] T. Schaul, J. Togelius, and J. Schmidhuber. Measuring intelligence
through games. arXiv preprint arXiv:1109.1314, 2011.

[125] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic mo-
tivation (1990–2010). IEEE Transactions on Autonomous Mental
Development, 2(3):230–247, 2010.

[126] J. Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[127] J. Schrum, I. V. Karpov, and R. Miikkulainen. UT 2: Human-like
behavior via neuroevolution of combat behavior and replay of human
traces. In Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, pages 329–336. IEEE, 2011.

[128] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust
region policy optimization. In International Conference on Machine
Learning, pages 1889–1897, 2015.

[129] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[130] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content
Generation in Games. Springer, 2016.

20

[131] N. Shaker, J. Togelius, G. N. Yannakakis, L. Poovanna, V. S. Ethiraj,
S. J. Johansson, R. G. Reynolds, L. K. Heether, T. Schumann, and
M. Gallagher. The turing test track of the 2012 mario AI championship:
entries and evaluation. In Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pages 1–8. IEEE, 2013.

[132] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its
own reward: Self-supervision for reinforcement learning. 2016.

[133] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[134] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller. Deterministic policy gradient algorithms. In Proceedings of the
31st International Conference on Machine Learning (ICML-14), pages
387–395, 2014.

[135] P. D. Sørensen, J. M. Olsen, and S. Risi. Breeding a diversity of
super mario behaviors through interactive evolution. In Computational
Intelligence and Games (CIG), 2016 IEEE Conference on, pages 1–7.
IEEE, 2016.

[136] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro. Evaluating real-
time strategy game states using convolutional neural networks. In IEEE
Conference on Computational Intelligence and Games (CIG 2016),
2016.

[137] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time neuroevo-
lution in the NERO video game. IEEE transactions on evolutionary
computation, 9(6):653–668, 2005.

[138] P. Stone and R. S. Sutton. Keepaway soccer: A machine learning test
bed. In Robot Soccer World Cup, pages 214–223. Springer, 2001.

[139] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning.
arXiv preprint arXiv:1712.06567, 2017.

[140] A. Summerville, S. Snodgrass, M. J. Guzdial, C. Holmgx00E5rd,
A. K. Hoover, A. Isaksen, A. Nealen, and J. Togelius. Procedural
content generation via machine learning (pcgml). IEEE Transactions
on Games, 10:257–270, 2018.

[141] P. Sun, X. Sun, L. Han, J. Xiong, Q. Wang, B. Li, Y. Zheng, J. Liu,
Y. Liu, H. Liu, et al. Tstarbots: Defeating the cheating level builtin ai
in starcraft ii in the full game. arXiv preprint arXiv:1809.07193, 2018.

[142] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[143] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al.
Policy gradient methods for reinforcement learning with function
approximation. In NIPS, volume 99, pages 1057–1063, 1999.

[144] P. Sweetser. Emergence in games. Cengage Learning, 2008.
[145] G. Synnaeve, N. Nardelli, A. Auvolat, S. Chintala, T. Lacroix, Z. Lin,

F. Richoux, and N. Usunier. Torchcraft: a library for machine learning
research on real-time strategy games. arXiv preprint arXiv:1611.00625,
2016.

[146] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente. Multiagent cooperation and competition with
deep reinforcement learning. PloS one, 12(4):e0172395, 2017.

[147] M. Tan. Multi-agent reinforcement learning: Independent vs. cooper-
ative agents. In Proceedings of the tenth international conference on
machine learning, pages 330–337, 1993.

[148] Z. Tang, D. Zhao, Y. Zhu, and P. Guo. Reinforcement learning for
build-order production in starcraft ii. In 2018 Eighth International
Conference on Information Science and Technology (ICIST), pages
153–158. IEEE, 2018.

[149] Y. Teh, V. Bapst, R. Pascanu, N. Heess, J. Quan, J. Kirkpatrick, W. M.
Czarnecki, and R. Hadsell. Distral: Robust multitask reinforcement
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4497–4507. Curran
Associates, Inc., 2017.

[150] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor.
A deep hierarchical approach to lifelong learning in minecraft. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California, USA., pages
1553–1561, 2017.

[151] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick. Elf: An
extensive, lightweight and flexible research platform for real-time
strategy games. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 2656–2666. Curran
Associates, Inc., 2017.

[152] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for
model-based control. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 5026–5033. IEEE, 2012.

[153] J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmidhu-
ber. Ontogenetic and phylogenetic reinforcement learning. Künstliche
Intelligenz, 23(3):30–33, 2009.

[154] N. Usunier, G. Synnaeve, Z. Lin, and S. Chintala. Episodic exploration
for deep deterministic policies: An application to starcraft microman-
agement tasks. 2017.

[155] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In AAAI, pages 2094–2100, 2016.

[156] H. Van Seijen, R. Laroche, M. Fatemi, and J. Romoff. Hybrid reward
architecture for reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 30, pages 5396–5406. Curran Associates,
Inc., 2017.

[157] O. Vinyals, T. Ewalds, S. Bartunov, A. S. Georgiev, Petko Vezhn-
evets, M. Yeo, A. Makhzani, H. Kuttler, J. Agapiou, J. Schrittwieser,
S. Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. v. Hasselt, D. Sil-
ver, T. Lillicrap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence,
A. Ekermo, J. Repp, and R. Tsing. Starcraft II: A new challenge for
reinforcement learning. manuscript, 2017.

[158] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi. Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018.

[159] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius. Portfolio online
evolution in StarCraft. In Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2016.

[160] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas. Sample efficient actor-critic with experience replay.
2017.

[161] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas. Dueling network architectures for deep reinforcement
learning. In Proceedings of the 33rd International Conference on
Machine Learning (ICML), 2016.

[162] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[163] M. Wiering and J. Schmidhuber. Hq-learning. Adaptive Behavior,
6(2):219–246, 1997.

[164] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–
256, 1992.

[165] R. J. Williams and D. Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–
280, 1989.

[166] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba. Scalable
trust-region method for deep reinforcement learning using kronecker-
factored approximation. In Advances in neural information processing
systems, pages 5285–5294, 2017.

[167] Y. Wu and Y. Tian. Training agent for first-person shooter game with
actor-critic curriculum learning. In Submitted to Intl Conference on
Learning Representations, 2017.

[168] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner. TORCS, the open racing car simulator. Software available
at http://torcs. sourceforge. net, 2000.

[169] G. N. Yannakakis, P. Spronck, D. Loiacono, and E. André. Player
modeling. In Dagstuhl Follow-Ups, volume 6. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2013.

[170] G. N. Yannakakis and J. Togelius. A panorama of artificial and com-
putational intelligence in games. IEEE Transactions on Computational
Intelligence and AI in Games, 7(4):317–335, 2015.

[171] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games.
Springer, 2018.

[172] H. Yu, H. Zhang, and W. Xu. A deep compositional framework for
human-like language acquisition in virtual environment. arXiv preprint
arXiv:1703.09831, 2017.

[173] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor.
Learn what not to learn: Action elimination with deep reinforcement
learning. arXiv preprint arXiv:1809.02121, 2018.

	I Introduction
	II Deep Learning in Games Overview
	II-A Neural Network Models
	II-B Optimizing Neural Networks
	II-B1 Supervised Learning
	II-B2 Unsupervised Learning
	II-B3 Reinforcement Learning Approaches
	II-B4 Evolutionary Approaches
	II-B5 Hybrid Learning Approaches

	III Game Genres and Research Platforms
	III-A Arcade Games
	III-B Racing Games
	III-C First-Person Shooters (FPS)
	III-D Open-World Games
	III-E Real-time Strategy Games
	III-F Team Sports Games
	III-G Text Adventure Games
	III-H OpenAI Gym & Universe

	IV Deep Learning Methods for Game Playing
	IV-A Arcade Games
	IV-B Montezuma's Revenge
	IV-C Racing Games
	IV-D First-Person Shooters
	IV-E Open-World Games
	IV-F Real-Time Strategy Games
	IV-G Team Sports Games
	IV-H Physics Games
	IV-I Text Adventure Games

	V Historical Overview of Deep Learning in Games
	VI Open Challenges
	VI-A Agent Model Properties
	VI-A1 General Video Game Playing
	VI-A2 Overcoming sparse, delayed, or deceptive Rewards
	VI-A3 Learning with multiple agents
	VI-A4 Lifetime adaptation
	VI-A5 Human-like game playing
	VI-A6 Adjustable performance levels
	VI-A7 Dealing with extremely large decision spaces

	VI-B Game Industry
	VI-B1 Adoption in the game industry
	VI-B2 Interactive tools for game development
	VI-B3 Creating new types of video games

	VI-C Learning models of games
	VI-D Computational Resources

	VII Conclusion
	References

