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Abstract—Imitation Learning (IL) is a machine learning ap-
proach to learn a policy from a set of demonstrations. IL can
be useful to kick-start learning before applying reinforcement
learning (RL) but it can also be useful on its own, e.g. to learn
to imitate human players in video games. Despite the success
of systems that use IL and RL, how such systems can adapt
in-between game rounds is a neglected area of study but an
important aspect of many strategy games. In this paper, we
present a new approach called Behavioral Repertoire Imitation
Learning (BRIL) that learns a repertoire of behaviors from
a set of demonstrations by augmenting the state-action pairs
with behavioral descriptions. The outcome of this approach
is a single neural network policy conditioned on a behavior
description that can be precisely modulated. We apply this
approach to train a policy on 7,777 human demonstrations for
the build-order planning task in StarCraft II. Dimensionality
reduction is applied to construct a low-dimensional behavioral
space from the high-dimensional army unit composition of each
human replay. The results demonstrate that the learned policy
can be effectively manipulated to express distinct behaviors.
Additionally, by applying the UCB1 algorithm, the policy can
adapt its behavior – in-between games – to reach a performance
beyond that of the traditional IL baseline approach.

Index Terms—StarCraft II, imitation learning, build-order
planning, online adaptation

I. INTRODUCTION

Deep reinforcement learning has shown impressive results,
especially for board games [1] and video games [2]. In
some games it is sufficient to learn one strong policy, e.g.
by finding an approximate global optimum. In other games,
especially those with non-transitive strategies where there is
no single optimal policy, it can be an advantage to learn
a whole repertoire of strong and diverse policies. A policy
repertoire also allows for inter-game adaption, i.e. adjusting
the strategy in-between game rounds, which is an important
strategic aspect in strategy games despite being neglected
in game AI research. The Real-time Strategy (RTS) game
StarCraft (Blizzard Entertainment, 1998) is a good example
of a game that requires inter-game adaptation and is has been
a testbed for game AI research [3; 4]. The recent StarCraft
bot AlphaStar learned a repertoire of policies through the so-
called AlphaLeague wherein diversity was fostered through a
massively parallel reinforcement learning system that rewarded
different agents differently [5]. Despite having a repertoire of
different policies, AlphStar does not adapt in-between game
rounds. In the AlphaLeague, diverse strategies were discovered

Fig. 1. Behavioral Repertoire Imitation Learning (BRIL) trains a policy
π(s, b) supervised on a data set of state-action pairs augmented with behav-
ioral descriptors in R2 for each demonstration. When deployed, a system
can adapt its behavior by modulating b. High-dimensional behavioral spaces
can be reduced using dimensionality reduction, as low-dimensional behavioral
descriptions allow for faster adaption.

with reinforcement learning, while Imitation Learning (IL)
from human replays were shown necessary to bootstrap the
learning process.

In this paper, we present a new method called Behavioral
Repertoire Imitation Learning (BRIL) that demonstrates how
IL alone can discover strong and diverse policies suitable for
inter-game adaptation. BRIL learns a single policy network
that receives a low-dimensional behavioral description as an
additional input vector. We show that a policy learned with
BRIL can express a large space of behaviors and that it enables
effective inter-game adaptation for a simple StarCraft bot. To
our knowledge, no prior imitation learning techniques has been
demonstrated to facilitate inter-game adaptation.

BRIL consists of a multi-step process (Fig. 1) wherein the
experimenter: (1) extracts state-action pairs (similarly to many
IL approaches), (2) designs a set of behavioral dimensions to
form a behavioral space (inspired by Quality-Diversity (QD)
algorithms [6; 7]) and determines the behavioral description
(coordinates in the space) for each demonstration, (3) merges
the data to form a dataset of state-action-behavior triplets,
and (4) trains a model to predict actions from state-behavior
pairs through supervised learning. When deployed, the model
can act as a policy and the behavior of the model can be
manipulated by changing its behavioral input features.

BRIL is tested on the build-order planning problem in
StarCraft [8; 9; 10; 11], in which a high-level policy controls
the build-order decisions of a bot that use scripted modules
for low-level tasks. Real-Time Strategy (RTS) games, such
as StarCraft, are among the hardest games for algorithms to
learn as they contain a myriad of problems, such as dealing



with imperfect information, adversarial real-time planning,
sparse rewards, or huge state and action spaces [12]. Several
algorithms and bots have been built [3; 13] to compete in AI
tournaments such as the AIIDE StarCraft AI Competition1, the
CIG StarCraft RTS AI Competition2, and the Student StarCraft
AI Competition3. While our StarCraft bot is much simpler and
weaker than many other bots (including AlphaStar), our results
demonstrate how adaptation using a behavioral repertoire can
improve a bot and potentially allow it to become robust to
exploitation which is a great concern for many AI systems.

II. BACKGROUND

A. Imitation Learning

While Reinforcement Learning (RL) deals with learning a
mapping (a policy) between states and actions by interacting
with an environment, in Imitation Learning (IL) a policy
is learned from demonstrations. Methods based on IL, also
known as Learning from Demonstration (LfD), have shown
promise in the field of robotics [14; 15; 16; 17; 18] and games
[9; 19; 20; 21; 22; 23; 24].

IL is a form of supervised learning, in which the goal is to
learn a policy π(s), mapping a state s ∈ S to a probability
distribution over possible actions. In contrast to an RL task,
the agent is presented with a dataset D of demonstrations. A
demonstration dj ∈ D consists of kj sequential state-action
pairs, where the action was taken in the state by some policy.
While not a general requirement, in this paper a demonstration
corresponds to an episode, i.e. starting from an initial state and
ending in a terminal state.

Generative Adversarial Imitation Learning (GAIL) uses a
Generative Adversarial Network (GAN) architecture wherein
the generator is a policy that produces trajectories (without
access to rewards) and the discriminator has to distinguish
between the generated trajectories and trajectories from a
set of demonstrations [25]. Two extensions of GAIL learn
a latent space of the demonstrations [26; 27], which results
in a conditioned policy similar to our approach. While the
BRIL approach introduced here requires manually designed
behavioral dimensions, it also gives the user more control
over the learned policy; different behavioral spaces can be
beneficial for different purposes. A latent space also does not
explicitly bare meaning, in contrast to a manually defined
behavioral space. Additionally, our approach learns a low-
dimensional behavioral space that is suitable for fast adaptation
and human inspection.

B. Quality Diversity & Behavioral Repertoires

Traditional optimization algorithms aim at finding the opti-
mal solution to a problem. Quality Diversity (QD) algorithms,
on the other hand, attempt to find a set of high-performing
but behavioral diverse solutions [6]. QD algorithms usually
rely on evolutionary algorithms, such as Novelty Search with

1http://www.cs.mun.ca/∼dchurchill/starcraftaicomp/
2http://cilab.sejong.ac.kr/sc competition/
3http://sscaitournament.com/

Local Competition (NSLC) [28] or MAP-Elites [7]. NSLC
is a population-based multi-objective evolutionary algorithm
with a novelty objective that encourages diversity and a local
competition objective that measures an individual’s ability to
outperform similar individuals in the population. Individuals
are added to an archive throughout the optimization process if
they are significantly more novel than previously explored be-
haviors. MAP-Elites does not maintain a population through-
out the evolutionary run, only an archive divided into cells
that reflect the concept of behavioral niches in a pre-defined
behavioral space. For example, different cells in the map
correspond to different walking gaits for a hexapod robot [29].
Both NSLC and MAP-Elites results in an archive of diverse
and high-performing solutions. The pressure toward diversity
in QD algorithms can help the optimization process escape
local optima [30], while the diverse set of solutions also allows
for online adaption by switching intelligently between these
[31]. We will describe variations of such an adaption procedure
in the next section.

QD is related to the general idea of learning behavioral
repertoires. Where QD algorithms optimize towards a single
quality objective by simultaneously searching for diversity,
a behavioral repertoire can consist of solutions optimized
towards different objectives as in the Transferability-based
Behavioral Repertoire Evolution algorithm (TBR-Evolution)
[29].

C. Bandit Algorithms & Bayesian Optimization
Given either a discrete set or a continuous distribution of

options, we can intelligently decide which options to select to
maximize the expected total return over several trials. To do
this, we consider the discrete case as a k-armed bandit problem
and the continuous case as a Bayesian optimization problem.
In the continuous case, the problem can also be simplified to
a k-armed bandit problem, simply by picking k options from
the continuous space of options.

The goal of a k-armed bandit problem is to maximize the
total expected return after some number of trials by iteratively
selecting one of k arms/options, each representing a fixed
distribution of returns [32]. To solve this problem, one must
balance exploitation (leveraging an option that has rendered
high returns in the past) and exploration (trying options to
gain a better estimation of their expected value). A bandit
algorithm is a general solution to k-armed bandit problems.
One of the most popular of these is the Upper Confidence
Bound 1 (UCB1) algorithm [33] that first tries each arm once
and then always selects the option that at each step maximizes:

Xj + C

√
2 ln t

nj
, (1)

where Xj is the mean return when selecting option j after t
steps, nj is the number of times option j has been selected,
and C is a constant that determines the level of exploration.

This k-armed bandit approach can be considered as the dis-
crete case of the more general approach of Bayesian optimiza-
tion (BO), in which a continuous black-box objective function

http://www.cs.mun.ca/~dchurchill/starcraftaicomp/
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http://sscaitournament.com/


is optimized. BO starts with a prior distribution over objective
functions, which is then updated based on queries to the black-
box function using Bayes’ theorem. The Intelligent Trial-and-
Error algorithm (IT&E) uses BO for robot adaptation to deal
with changes in the environment by intelligently searching in
the continuous behavioral space of policies found by MAP-
Elites [31]. In their approach, the fitness of all solutions in the
behavioral space is used to construct a prior distribution of the
fitness, which is also called a behavior-performance map. A
Bayesian optimizer is then used to sample a point in the map,
record the observed performance, and compute a posterior
distribution of the fitness. This process is continued until a
satisfying solution is found. IT&E could also be applied as an
adaptation procedure to the policy found by BRIL, by creating
a prior distribution based on some quality information of the
demonstrations, e.g. player rating or win-rate. A Bayesian
optimizer is then used to optimize the behavioral feature input.
In this paper we will, however, simplify the adaption process
to a discrete k-armed bandit problem with k manually selected
behavioral features and leave the use of Bayesian optimization
techniques for future work.

D. Dimensionality Reduction

In this paper, the dimensionality of the behavior space is
reduced using the t-distributed Stochastic Neighbor Embed-
ding (t-SNE) by [34]. In Stochastic Neighbor Embedding
(SNE, a precursor to t-SNE), a graph is embedded by min-
imizing the distance between two probability distributions
measured with the Kullback-Leibler divergence. The first of
these probability distributions reflect the similarity between
the high-dimensional points, and the second one measures
the similarity between the embedded, low dimensional points.
The high-dimensional probability is fixed, while the embed-
ding is iteratively updated to minimize the distance between
its probability distribution and the fixed one. t-SNE uses a
Student t-distribution kernel for the embedding’s probability,
solving previously known flukes of SNE such as the crowding
problem.

E. Universal Policies

In value-based RL, one typically learns a state value func-
tion Vπ(s) or a state-action value function Qπ(s, a) for a
policy π. Universal Value Function Approximators (UVFA)
instead learn a joint distribution Vπ(s, g) or Qπ(s, a, g) over
all goals G [35]. UVFA can be learned using supervised
learning from a training set of optimal values such as V ∗

g (s)
or Q∗

g(s, a), or it can be learned through RL by switching
between goals both when generating trajectories and when
computing gradients. Hindsight Experience Replay is an exten-
sion to UVFAs, which performs an additional gradient update
with the goal being replaced by the terminal state; this modi-
fication can give further improvements when it is infeasible to
reach the goals [36]. An extension to Generative Adversarial
Imitation Learning (GAIL) augments each trajectory with a
context [37], which specifies the agent’s sub-goals that can be
modulated at test-time.

In our approach, we are not considering goals, but rather
behaviors, intending to learn a universal policy π(s, b) over
states s ∈ S and behaviors b ∈ B in a particular behavioral
space. We are thus combining the QD approach of designing
a behavioral space with the idea of learning a universal policy
to express behaviors in this space.

III. BEHAVIORAL REPERTOIRE IMITATION LEARNING
(BRIL)

This section describes two approaches to learning behavioral
repertoires using IL. We first describe how a behavioral space
can be formed from demonstrations. Then we introduce a
naive IL approach that first clusters demonstrations based on
their coordinates in the behavioral space, and then applies
traditional IL on each cluster. Finally, BRIL is introduced,
which learns a single policy augmented with a behavioral
feature input rather than learning multiple policies for each
behavioral cluster.

A. Behavioral Spaces from Demonstrations

A behavioral space consists of some behavioral dimensions
that are typically determined by the experimenter. For ex-
ample, in StarCraft, behavioral dimensions can correspond to
the ratio of each army unit produced throughout the game to
express the strategic characteristics of the player. A behavioral
space can require numerous dimensions to be able to express
meaningful behavioral relationships between interesting solu-
tions for a problem. Intuitively, if the problem is complex,
more dimensions can give a finer granularity in the diversity
of solutions. However, there is a trade-off between granularity
and adaptation, as low-dimensional spaces are easier to search
in. We thus propose the idea of first designing a high-
dimensional behavioral space and then reducing the number
of dimensions through dimensionality reduction techniques.
In our preliminary experiments, it has shown beneficial to
reduce the space to two dimensions, as it allows for easy
visualization of the data distribution and it also seems to be
a good trade-off between granularity and adaptation speed.
In preliminary experiments with one-dimensional behavioral
spaces, we noticed that nearby solutions could be wildly
different.

B. Imitation Learning on Behavioral Clusters

The naive IL approach for learning behavioral repertories
trains n policies on n behaviorally diverse subsets of the
demonstrations. This idea is similar to the state-space clus-
tering in Thurau et al. [21], but we cluster data points in a
behavioral space instead. When a behavioral space is defined,
each demonstration can be specified by a particular behavioral
description (a coordinate in the Rn dimensional space), where
afterward a clustering algorithm can split the dataset into
several subsets. Hereafter, traditional IL can be applied to each
subset to learn one policy for each behavioral cluster. This
approach creates a discrete set of policies similar to current QD
algorithms. However, it introduces a dilemma: if the clusters
are small, there is a risk of overfitting to these reduced training



sets. On the other hand, if the clusters are large but few, the
granularity of behaviors is lost.

C. Learning Behavioral Repertoires

QD algorithms typically fill an archive with diverse and
high-quality solutions, sometimes resulting in thousands of
policies stored in a single run, which increases the storage
requirements in training as well as in deployment. To reduce
the storage requirement, one can decrease the size of the
archive, with the trade-off of losing granularity in the behav-
ioral space. The main approach introduced in this paper, called
Behavioral Repertoire Imitation Learning (BRIL), solves these
issues and reduces overfitting by employing a universal policy
instead, in which a single policy is conditioned on a behavioral
description. In contrast to QD algorithms, the goal of BRIL is
neither to optimize quality nor diversity directly. Instead, BRIL
attempts to imitate and express the diverse range of behaviors
and the quality that exists in a given set of demonstrations.
Additionally, BRIL produces a continuous space of policies
which is potentially more expressive than a discrete set.

BRIL extends the traditional imitation learning setting
through the following approach. First, the behavioral char-
acteristics of each demonstration are determined. If the di-
mensionality of these descriptions is large, it can be useful to
reduce the space as described in the earlier section. A training
set of state-action-behavior triplets is then constructed, such
that the behavior is equal to the behavioral description of the
corresponding demonstration. Then, a policy π(s, b) is trained
in a supervised way on this dataset to map states and behaviors
to actions. Following this approach, the training set is not
reduced to small behavioral clusters.

When the trained policy is deployed, the behavioral feature
input can be modulated to manipulate its behavior. The sim-
plest approach is to fix the behavioral features throughout an
episode, evaluate the episodic return, and then consider new
behavioral features for the next episode. This approach should
allow for episodic, or inter-game, adaptivity, which will be
explored in our experiments. One could also manipulate the
behavioral features during an episode e.g. by learning a meta-
policy.

IV. EXPERIMENTS

This section presents the experimental results of applying
BRIL to the game of StarCraft. Policies are trained to control
the build-order planning module of a relatively simple scripted
StarCraft bot4 that plays the Terran race. While the policy
is trained off-line, our experiments attempt to optimize the
playing strength of this bot online, in-between episodes/games,
by manipulating its behavior.

A. Behavioral Feature Space

The behavioral space for a StarCraft build-order policy can
be designed in many ways. Inspired by the AlphaStar League
Strategy Map [23], the behavioral features are constructed
from the army composition, such that the dimensions represent

4https://github.com/njustesen/sc2bot

the ratios of each unit type. We achieve this by traversing
all demonstrations in the data set, counting all the army
unit creation events, and computing the relative ratios. Each
demonstration thus has an n-dimensional behavioral feature
description, where n = 15 is the number of army unit types
for Terran.

To form a 2D behavioral space, which allows for easier
online search and analysis, we apply t-Distributed Stochastic
Neighbor Embedding (t-SNE). Fig. 2 visualizes the points of
all the demonstrations in this 2D space and Fig. 2a shows
four plots where the points are colored to show the ratios
of Marines, Marauders, Hellions, and Siege Tanks that were
produced during these games.

B. Clustering

For the baseline approach that applies IL to behavioral
clusters, we use density-based spatial clustering of applications
with noise (DBSCAN) with ε = 0.02 and a minimum number
of samples per cluster of 30. We performed a grid-search
on these two parameters to find the most meaningful data
separation; however, the clustering is not perfect due to the
many outliers. The clusters are visualized in Fig. 2b, with
outliers shown in black.

C. Performance in StarCraft

We trained three groups of neural networks, all with three
hidden layers and 256 hidden nodes per layer: (1) One baseline
model trained on the whole dataset with no augmentation of
behavioral features, (2) a BRIL model on the whole dataset
with two extra input nodes for the behavioral features (i.e. the
coordinates in Fig. 2b), and (3) several cluster baseline models
trained only on demonstrations from their respective clusters
without the augmented behavioral features.

We applied these trained policy models as build-order
modules in the scripted StarCraft II Terran bot sc2bot. It is
important to note that this is a very simplistic bot with several
flaws and limitations. Therefore the main goal in this paper
is not to achieve human-level performance in StarCraft, but
rather to test if BRIL allows us to do manipulate its behav-
ior and enables online adaptation. The build-order module,
here controlled by one of our policies, is queried with a
state description and returns a build-order action, i.e. which
building, research, or unit to produce next. The worker and
building modules of the bot perform these actions accordingly,
while assault, scout, and army modules control the army units.
Importantly, policies we test act in a system that consists of
both the bot, the opponent bot, and the game world. When
we want to utilize our method for adaptation, we are thus not
only adapting to the opponent but also the peculiarities of the
bot itself.

We will first focus on the results of the traditional IL
approach. Table I shows the number of wins in 100 games on
the two-player map CatalystLE as well as the corresponding
average behaviors (i.e. the army unit ratios). Our bot played
as Terran against the built-in Easy Zerg bot. The traditional

https://github.com/njustesen/sc2bot
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Fig. 2. Visualizations of the 2D behavioral space of Terran army unit combinations in 7,777 Terran versus Zerg replays. Each point represents a
replay from the Terran player’s perspective. The space was reduced using t-SNE. (a) The data points are illuminated (black is low and yellow is high) by the
ratio of Marines, Marauders, Hellions, or Siege Tanks produced in each game. (b) 62 clusters found by DBSCAN. Cluster centroids are marked with a circle
and the cluster number and outliers are black. The noticeable cluster 2 has no army units. (c) The similarity between the behaviors of the human players and
our approach with four different feature inputs, corresponding to the coordinates of centroids of cluster 10, 11, 30, and 32. The behavior of our approach is
averaged over 100 games against the easy Zerg bot and its nearest human behavior is marked with a star. The behavior of the learned policy can be efficiently
manipulated to change its behavior. Additionally, we can control the behavior such that it resembles the behavior of a human demonstration.

TABLE I
RESULTS IN STARCRAFT USING IMITATION LEARNING (IL) ON THE WHOLE TRAINING SET, IL ON INDIVIDUAL CLUSTERS (C10, C11, C30, AND C32),

AND BEHAVIORAL REPERTOIRE IMITATION LEARNING (BRIL) WITH FIXED BEHAVIORAL FEATURES CORRESPONDING TO CENTROIDS IN C10, C11,
C30, AND C32. ADDITIONALLY, RESULTS ARE SHOWN IN WHICH UCB1 SELECTS BETWEEN THE FOUR BEHAVIORAL FEATURES IN-BETWEEN GAMES.
EACH VARIANT PLAYED 100 GAMES AGAINST THE EASY ZERG BOT. THE NEAREST DEMONSTRATION IN THE ENTIRE DATASET WAS FOUND BASED ON
THE BOT’S MEAN BEHAVIOR (NORMALIZED ARMY UNIT COMBINATION) AND THE DISTANCE TO EACH CLUSTER CENTROID ARE SHOWN. THE RESULTS
DEMONSTRATE THAT BY USING CERTAIN BEHAVIORAL FEATURES, THE BRIL POLICY OUTPERFORMS THE TRADITIONAL IL APPROACH AS WELL AS IL

ON BEHAVIORAL CLUSTERS.

Distance to cluster centroid Combat units produced
Method Wins C10 C11 C30 C32 Marines Marauders Hellions S. Tanks Reapers
IL 41/100 0.58 0.22 0.39 0.75 44.1 ± 50.5 0.7 ± 3.2 2.6 ± 7.6 1.7 ± 6.5 0.3 ± 1.1
IL (C10) 3/100 0.05 0.76 0.81 0.71 1.1 ± 2.3 0.1 ± 0.3 3.11 ± 6.1 0.1 ± 0.4 0.1 ± 0.33
IL (C11) 7/100 0.74 0.00 0.52 0.96 18.8 ± 38.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IL (C30) 18/100 0.76 0.21 0.31 0.79 43.5 ± 62.6 0.9 ± 5.4 0.2 ± 1.3 0.0 ± 0.2 0.2 ± 0.8
IL (C32) 0/100 0.71 0.94 0.57 0.04 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.9 ± 18.5
BRIL (C10) 27/100 0.21 0.85 0.81 0.60 2.4 ± 4.9 0.0 ± 0.0 14.6 ± 18.9 4.0 ± 5.2 0.2 ± 0.6
BRIL (C11) 76/100 0.70 0.05 0.53 0.95 81.4 ± 50.1 0.0 ± 0.1 0.2 ± 0.1 0.9 ± 2.4 0.3 ± 0.6
BRIL (C30) 47/100 0.60 0.31 0.29 0.65 41.6 ± 36.4 2.4 ± 6.7 0.7 ± 2.5 4.1 ± 7.8 0.5 ± 1.2
BRIL (C32) 16/100 0.42 0.72 0.53 0.36 7.1 ± 11.4 1.7 ± 6.5 3.2 ± 8.3 6.7 ± 9.7 0.8 ± 1.5

Wins for each option Combat units produced
Method Win C10 C11 C30 C32 Marines Marauders Hellions Siege Tanks Reapers
BRIL (UCB1) 61/100 5/14 47/59 8/18 1/9 52.1 ± 47.7 0.5 ± 3.2 4.3 ± 12.5 2.5 ± 6.2 0.3 ± 1.3



IL approach won 41/100 games. IL on behavioral clusters
showed very poor performance with a maximum of 18/100
wins by the model trained on C30. Besides the number of
wins, we compute the nearest demonstration in the entire
data set from the average behavior and use it as an estimate
of the policy’s position in the 2D behavioral space. From
the estimated point, we calculate the distance to each of the
four cluster centroids. This analysis revealed that the policies
trained on behavioral clusters express behaviors close to the
clusters they were trained on (note the distances to the cluster
centroids in Table I). We hypothesize that the poor win rates
of this naive approach are due to their training sets being too
small such that the policies do not generalize to many of the
states explored in the test environment.

Table I also shows the results for BRIL with the coordinates
of the four cluster centroids as behavioral features. BRIL
(C11) achieves a win rate of 76/100, thus outperforming tradi-
tional IL. These results demonstrate that, for some particular
environment, the model can be tuned to achieve a higher
performance than traditional IL. Analyzing the behavior of
the bot with the behavioral features of C11 reveals that it
performs an all-in Marine push, similarly to the behavior of
the demonstrations in C11 (notice the position of C11 on
Fig. 2.b and the illumination of Marines on Fig. 2.a). With
the behavioral features of C30, the approach reached a higher
win rate than traditional IL; however, this difference was not
significant. We also notice that for both BRIL and IL on
behavioral clusters, the average expressed behavior is closest
to the cluster centroid that it was modulated to behave as,
among the four clusters we selected. The results show that
the behavior of the learned BRIL policy can be successfully
controlled. However, the distances are on average larger than
for IL on behavioral clusters.

D. Army Compositions In-game

Replays in each of the clusters we examined in the bandit
problem (that is, C10, C11, C30 and C32) exhibit a particular
army composition in the game. Cluster 11, for example,
shows a strategy composed almost purely of Marines (see
Fig. 2). Fig. 3 shows screenshots of typical army compositions
produced by the BRIL policy with the four different behavioral
features.

E. Online Adaptation

The final test aims to verify that we can indeed use BRIL
for online adaptation. We apply the UCB1 algorithm to select
behavioral features from the discrete set of four options: {C10,
C11, C30, C32} (i.e. the two-dimensional feature descriptions
of these cluster centroids). This approach enables the algorithm
to switch between behavioral features in-between games based
on the return of the previous one, which is 1 for a win and
0 otherwise. The adaptive approach achieves 61/100 wins by
identifying the behavior of C11 as the best option. Not surpris-
ingly, the win rate is lower than when having the behavioral
features of C11 fixed, while it outperforms traditional IL.

Fig. 3. Typical army compositions produced by our trained BRIL policy with
behavioral features corresponding to the centroids of cluster 10, 11, 30 and 32.
BRIL (C10) executes early timing pushes with Hellions and Cyclones, BRIL
(C11) is aggressive with Marines only, BRIL (C30) creates mixed armies with
many Marines and Siege Tanks, and BRIL (C32) also creates mixed armies
but with less Marines and more Widow Mines.

V. DISCUSSION

We proposed two new IL methods in this paper, one which
learns a policy that is trained on only one behavioral cluster
of data points and one which learns a single modifiable policy
on the whole dataset. Our results suggest that policies trained
on small behavioral clusters overfit and are thus unable to
generalize beyond the states available in the cluster. This
drawback might be solved with fewer and larger clusters at
the cost of losing granularity in the repertoire of policies. If
data is abundant, this approach may also work better while we
still suspect the same overfitting would occur. BRIL, on the
other hand, is simple to implement and results in a continuous
distribution of policies by adjusting the behavioral features.
Additionally, the results suggest that BRIL generalizes better,
most likely because it learns from the whole training set. How-
ever, that generality potentially comes with the cost of higher
divergence between the expected behavior (corresponding to
the behavioral input features) and the resulting behavior when
tested. While an important concern, a divergence is somewhat
expected since the test environment is very different from that
of the training set (different maps and opponents).

GAIL can likely be used in a similar way as BRIL since
it also learns a distribution of policies that can be modulated.
With BRIL, we can control behavioral dimensions rather than
using a latent space that does not necessarily capture the
behaviors that we want to express. Important future work could
explore the effects on adaption using either a learned and
a user-defined behavioral space. The purpose of this paper
is not to show that BRIL is superior to GAIL but rather to
demonstrate how such methods can be used to achieve inter-
game adaption in strategy games.

Previous work showed how IL can kick-start learning before
applying RL [19; 23]. With BRIL, one can easily form a
population of diverse solutions instead of just one, which
may be a promising approach for domains with a plethora
of strategic choices like StarCraft. Promising future work
could thus combine BRIL with ideas from AlphaStar to
automatically form the initial population of policies used in
the AlphaStar League.



Another aspect worth discussing is the dimensionality
reduction algorithm. Even though t-SNE is considered by
most as the state-of-the-art method for dimension reduction,
several other techniques could be explored. For instance,
certain datasets’ structure can be recovered in low dimensional
space using simpler algorithms such as Principal Component
Analysis (PCA). Otherwise, other methods such as Isometric
Feature Mapping (Isomap) by [38], Locally Linear Embedding
(LLE) by [39] and Uniform Manifold Approximation and
Projection (UMAP) [40] could be used. The use of these
different techniques may impact the way the repertoire of
behaviors is separated in the low dimensional space.

VI. CONCLUSIONS

We introduced a new method called Behavioral Repertoire
Imitation Learning (BRIL). By labeling each demonstration
d ∈ D with a behavior descriptor confined within a pre-
defined behavioral space, BRIL can learn a policy π(s, b) over
states s ∈ S and behaviors b ∈ B. In our experiments, a
low-dimensional representation of the behavioral space was
obtained through dimensionality reduction. The results in
this paper demonstrate that BRIL can learn a policy that,
when deployed, can be manipulated by conditioning it with
a behavioral feature input b, to express a wide variety of
behaviors. Additionally, the observed behavior of the policy
resembles the behavior characterized by b. Furthermore, a
BRIL trained policy can be optimized online by searching
for optimal behavioral features in a given setting. In our
experiments, a policy trained with BRIL was optimized online
beyond the performance reached by traditional IL, using UCB1
to select among a set of discrete behavioral features.
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